Spinel structure Zn2SnO4 was successfully synthesized by microwave-assisted hydrothermal process. The effects of the microwave power on the formation and physical properties of the Zn2SnO4 particles are discussed. The...Spinel structure Zn2SnO4 was successfully synthesized by microwave-assisted hydrothermal process. The effects of the microwave power on the formation and physical properties of the Zn2SnO4 particles are discussed. The products were characterized by X-ray diffraction, atomic force microscopy, infrared spectroscopy, and N2 adsorption. The results indicated that the microwave power had important influence on the formation of the spinel phase. The results also revealed that the physical properties of Zn2SnO4 particles did not change with the increase of the microwave power above 600 W, with 20 min of reaction time. Furthermore, the photocatalytic activity of the Zn2SnO4 particles for the phenol degradation under sunlight was also investigated.展开更多
By measuring the respiratory oxygen consumption, a study on the aerobic biodegradability of 2-fluorophenol, 3- fluorophenol and 4-fluorophenol was conducted using activated sludge acclimated by themselves respectively...By measuring the respiratory oxygen consumption, a study on the aerobic biodegradability of 2-fluorophenol, 3- fluorophenol and 4-fluorophenol was conducted using activated sludge acclimated by themselves respectively. The experimental results showed that bio-oxidation ratios of 2- fluorophenol, 3- fluorophenol and 4- fluorophenol were 25.30%, 35.28% and 36.60% respectively, and the constmdng rate constants were 0.009 3, 0.013 3 and 0.014 5 L/ gSS. h respect/vdy. The aerobic biodegradability of the mono-fluorophenols decreased in the order of 4- fluorop- henol〉3 - fluorophenol 〉2 - fluorophenol, resulting mainly from the different octanol/water partition coefficient and the different steric parameter of the fluorophenols which can affect the penetration of fluorophenol into cell membrane.展开更多
A slightly modified method for 10-ethyl flavin was developed in the present study. The synthetic product was characterized by nuclear magnetic resonance(NMR) and mass spectrometry, and used to catalyze the photocataly...A slightly modified method for 10-ethyl flavin was developed in the present study. The synthetic product was characterized by nuclear magnetic resonance(NMR) and mass spectrometry, and used to catalyze the photocatalytic degradation of phenol, 2, 4-dichlorophenoxyacetic acid, p-nitrophenol, 4-chlorophenol, 4-methoxyphenol, 4-chloro-2-methyl-phenoxyacetic acid and2, 4, 5-trichloro-phenoxyacetic acid. Both HPLC(high performance liquid chromatography) and GC-MS data suggested that all phenols were degraded in the presence of either flavin at micromolar concentrations under direct sun light. A rapid breakdown of the phenols was observed. The degradation efficiency was clearly dependent on phenol type. In a decreasing order of degradation efficiency over a 2-h period, the phenols were 4-chlorophenol and 4-methoxyphenol(-80%) > phenoxyacetic acids(60%-65%) > nitrophenol and phenol(-35%).展开更多
文摘Spinel structure Zn2SnO4 was successfully synthesized by microwave-assisted hydrothermal process. The effects of the microwave power on the formation and physical properties of the Zn2SnO4 particles are discussed. The products were characterized by X-ray diffraction, atomic force microscopy, infrared spectroscopy, and N2 adsorption. The results indicated that the microwave power had important influence on the formation of the spinel phase. The results also revealed that the physical properties of Zn2SnO4 particles did not change with the increase of the microwave power above 600 W, with 20 min of reaction time. Furthermore, the photocatalytic activity of the Zn2SnO4 particles for the phenol degradation under sunlight was also investigated.
基金Supported by State Key Laboratory of Pollution Control and Resource Reuse ( No. PCRRF06007and PCRRYSF06001) and ShanghaiScience and Technology Commission (No.05JC14059and05DZ22330)
文摘By measuring the respiratory oxygen consumption, a study on the aerobic biodegradability of 2-fluorophenol, 3- fluorophenol and 4-fluorophenol was conducted using activated sludge acclimated by themselves respectively. The experimental results showed that bio-oxidation ratios of 2- fluorophenol, 3- fluorophenol and 4- fluorophenol were 25.30%, 35.28% and 36.60% respectively, and the constmdng rate constants were 0.009 3, 0.013 3 and 0.014 5 L/ gSS. h respect/vdy. The aerobic biodegradability of the mono-fluorophenols decreased in the order of 4- fluorop- henol〉3 - fluorophenol 〉2 - fluorophenol, resulting mainly from the different octanol/water partition coefficient and the different steric parameter of the fluorophenols which can affect the penetration of fluorophenol into cell membrane.
文摘A slightly modified method for 10-ethyl flavin was developed in the present study. The synthetic product was characterized by nuclear magnetic resonance(NMR) and mass spectrometry, and used to catalyze the photocatalytic degradation of phenol, 2, 4-dichlorophenoxyacetic acid, p-nitrophenol, 4-chlorophenol, 4-methoxyphenol, 4-chloro-2-methyl-phenoxyacetic acid and2, 4, 5-trichloro-phenoxyacetic acid. Both HPLC(high performance liquid chromatography) and GC-MS data suggested that all phenols were degraded in the presence of either flavin at micromolar concentrations under direct sun light. A rapid breakdown of the phenols was observed. The degradation efficiency was clearly dependent on phenol type. In a decreasing order of degradation efficiency over a 2-h period, the phenols were 4-chlorophenol and 4-methoxyphenol(-80%) > phenoxyacetic acids(60%-65%) > nitrophenol and phenol(-35%).