Stability analysis of the dam is important for disaster prevention and reduction. The dam's geometry plays an important role in understanding its stability. This study develops a rapid landslide dam geometry asses...Stability analysis of the dam is important for disaster prevention and reduction. The dam's geometry plays an important role in understanding its stability. This study develops a rapid landslide dam geometry assessment method for both earthquake-induced and rainfall-induced landslide dams based on nine real cases collected in Chinese Taipei and 214 cases collected worldwide. For simplification purposes, a landslide dam is classified into triangular or trapezoidal. The rapid landslide dam geometry assessment method in this paper uses only satellite maps and the topographic maps to get landslide area, and then analyze the dam geometry. These maps are used to evaluate the area of the landslide and the slope of the river bed. Based on the evaluation information, the proposed method can calculate dam height, the length of the dam, and the angles of the dam in both upstream and downstream directions. These geometry parameters of a landslide dam provide important information for further dam stability analysis. The proposed methodology is applied to a real landslide dam case at Hsiaolin Village. The result shows that the proposed method can be used to assess the landslide dam geometry.展开更多
The "4.20" Lushan earthquake in Sichuan province, China has induced a large amount of geological hazards and produced abundant loose materials which are prone to post-earthquake rainfall- triggered landslides. A det...The "4.20" Lushan earthquake in Sichuan province, China has induced a large amount of geological hazards and produced abundant loose materials which are prone to post-earthquake rainfall- triggered landslides. A detailed landslide inventory was acquired through post-earthquake emergent field investigation and high resolution remote sensing interpretation. The rainfall analysis was conducted using historical rainfall records during the period from 1951 to 2010. Results indicate that the average annual rainfall distribution is heterogeneous and the largest average annual rainfall occurs in Yucheng district. The Stability Index MAPping (SINMAP) model was adopted to assess and analyze the post- earthquake slope stability under different rainfall scenarios (light rainfall, moderate rainfall, heavy rainfall, and rainstorm). The model parameters were calibrated to reflect the significant influence of strong earthquakes on geological settings. The slope stability maps triggered by different rainfall scenarios were produced at a regional scale. The effect of different rainfall conditions on the slope stability is discussed. The expanding trend of the unstable area was quantitatively assessed with the different critical rainfall intensity. They provide a new insight into the spatial distribution and characteristics of post- earthquake rainfall-triggered landslides in the Lushan seismic area. An increase of rainfall intensity results in a significant increase heterogeneous distribution strongly correlated with of unstable area. The of slope instability is the distribution of earthquake intensity in spite of different rainfall conditions. The results suggest that the both seismic intensity and rainfall are two crucial factors for post- earthquake slope stability. This study provides important references for landslide prevention and mitigation in the Lushan area after earthquake.展开更多
Critical rainfall assessment is a very important tool for hazard management of torrents and debris flows in mountainous areas. The Wenchuan Earthquake 2008 caused huge casualties and property damages in the earthquake...Critical rainfall assessment is a very important tool for hazard management of torrents and debris flows in mountainous areas. The Wenchuan Earthquake 2008 caused huge casualties and property damages in the earthquake-stricken area,which also generated large quantities of loose solid materials and increased occurrence probabilities of debris flows. There is an urgent need to quantify the critical rainfall distribution in the area so that better hazard management could be planned and if real time rainfall forecast is available,torrent and debris flow early-warning could be issued in advance. This study is based on 49-year observations (1954-2003) of up to 678 torrent and debris flow events. Detailed contour maps of 1 hour and 24 hour critical rainfalls have been generated (Due to the data limitation,there was insufficient 10 minute critical rainfall to make its contour map). Generally,the contour maps from 1 hour and 24 hours have similar patterns. Three zones with low,medium and high critical rainfalls have been identified. The characteristics of the critical rainfall zones are linked with the local vegetation cover and land forms. Further studies and observations are needed to validate the finding and improve the contour maps.展开更多
Wudu County in northwestern China frequently experiences large-scale landslide events. High-magnitude earthquakes and heavy rainfall events are the major triggering factors in the region. The aim of this research is t...Wudu County in northwestern China frequently experiences large-scale landslide events. High-magnitude earthquakes and heavy rainfall events are the major triggering factors in the region. The aim of this research is to compare and combine landslide suseeptibility assessments of rainfall- triggered and earthquake-triggered landslide events in the study area using Geographical Information System (GIS) and a logistic regression model. Two separate susceptibility maps were produeed using inventories reflecting single landslide-triggering events, i.e., earthquakes and heavy rain storms. Two groups of landslides were utilized: one group eontaining all landslides triggered by extreme rainfall events between 1995 and 2003 and the other group containing slope failures caused by the 2008 Wenchuan earthquake. Subsequently, the individual maps were combined to illustrate the loeations of maximum landslide probability. The use of the resulting three landslide susceptibility maps for landslide forecasting, spatial planning and for developing emergency response actions are discussed. The eombined susceptibility map illustrates the total landslide susceptibility in the study area.展开更多
基金supported by the National Science Council of the Chinese Taipei under Contracts No. NSC 101-2218-E-006-001
文摘Stability analysis of the dam is important for disaster prevention and reduction. The dam's geometry plays an important role in understanding its stability. This study develops a rapid landslide dam geometry assessment method for both earthquake-induced and rainfall-induced landslide dams based on nine real cases collected in Chinese Taipei and 214 cases collected worldwide. For simplification purposes, a landslide dam is classified into triangular or trapezoidal. The rapid landslide dam geometry assessment method in this paper uses only satellite maps and the topographic maps to get landslide area, and then analyze the dam geometry. These maps are used to evaluate the area of the landslide and the slope of the river bed. Based on the evaluation information, the proposed method can calculate dam height, the length of the dam, and the angles of the dam in both upstream and downstream directions. These geometry parameters of a landslide dam provide important information for further dam stability analysis. The proposed methodology is applied to a real landslide dam case at Hsiaolin Village. The result shows that the proposed method can be used to assess the landslide dam geometry.
基金supported by the Project of the 12th Five-year National Sci-Tech Support Plan of China (2011BAK12B09)the National Science Foundation of China (41072241)+1 种基金the One Hundred Talents Program of Chinese Academy of Sciences (A1055)the China Geological Survey Project (12120113038000)
文摘The "4.20" Lushan earthquake in Sichuan province, China has induced a large amount of geological hazards and produced abundant loose materials which are prone to post-earthquake rainfall- triggered landslides. A detailed landslide inventory was acquired through post-earthquake emergent field investigation and high resolution remote sensing interpretation. The rainfall analysis was conducted using historical rainfall records during the period from 1951 to 2010. Results indicate that the average annual rainfall distribution is heterogeneous and the largest average annual rainfall occurs in Yucheng district. The Stability Index MAPping (SINMAP) model was adopted to assess and analyze the post- earthquake slope stability under different rainfall scenarios (light rainfall, moderate rainfall, heavy rainfall, and rainstorm). The model parameters were calibrated to reflect the significant influence of strong earthquakes on geological settings. The slope stability maps triggered by different rainfall scenarios were produced at a regional scale. The effect of different rainfall conditions on the slope stability is discussed. The expanding trend of the unstable area was quantitatively assessed with the different critical rainfall intensity. They provide a new insight into the spatial distribution and characteristics of post- earthquake rainfall-triggered landslides in the Lushan seismic area. An increase of rainfall intensity results in a significant increase heterogeneous distribution strongly correlated with of unstable area. The of slope instability is the distribution of earthquake intensity in spite of different rainfall conditions. The results suggest that the both seismic intensity and rainfall are two crucial factors for post- earthquake slope stability. This study provides important references for landslide prevention and mitigation in the Lushan area after earthquake.
基金financially supported by the Scholarship of Knowledge Innovation Project, Chinese Academy of Sciences (KZCX2-YW-332)
文摘Critical rainfall assessment is a very important tool for hazard management of torrents and debris flows in mountainous areas. The Wenchuan Earthquake 2008 caused huge casualties and property damages in the earthquake-stricken area,which also generated large quantities of loose solid materials and increased occurrence probabilities of debris flows. There is an urgent need to quantify the critical rainfall distribution in the area so that better hazard management could be planned and if real time rainfall forecast is available,torrent and debris flow early-warning could be issued in advance. This study is based on 49-year observations (1954-2003) of up to 678 torrent and debris flow events. Detailed contour maps of 1 hour and 24 hour critical rainfalls have been generated (Due to the data limitation,there was insufficient 10 minute critical rainfall to make its contour map). Generally,the contour maps from 1 hour and 24 hours have similar patterns. Three zones with low,medium and high critical rainfalls have been identified. The characteristics of the critical rainfall zones are linked with the local vegetation cover and land forms. Further studies and observations are needed to validate the finding and improve the contour maps.
基金supported by the National Natural Science Foundation of China (Grant No.40930531)the National Key Technology R & D Program (Grant No. 2011BAK12B06)+1 种基金the Opening Fund of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection of Chengdu University of Technology (SKLGP2012K012)the Priority Academic Program Development of Jiangsu Higher Education Institutions, and the 51st Chinese PostDoc Science Foundation (Grant No. 2012M511298)
文摘Wudu County in northwestern China frequently experiences large-scale landslide events. High-magnitude earthquakes and heavy rainfall events are the major triggering factors in the region. The aim of this research is to compare and combine landslide suseeptibility assessments of rainfall- triggered and earthquake-triggered landslide events in the study area using Geographical Information System (GIS) and a logistic regression model. Two separate susceptibility maps were produeed using inventories reflecting single landslide-triggering events, i.e., earthquakes and heavy rain storms. Two groups of landslides were utilized: one group eontaining all landslides triggered by extreme rainfall events between 1995 and 2003 and the other group containing slope failures caused by the 2008 Wenchuan earthquake. Subsequently, the individual maps were combined to illustrate the loeations of maximum landslide probability. The use of the resulting three landslide susceptibility maps for landslide forecasting, spatial planning and for developing emergency response actions are discussed. The eombined susceptibility map illustrates the total landslide susceptibility in the study area.