The variation of winter snowfall intensity over Northeast China and its relationship with the autumn North Pacific SST are investigated for the period 1960–2012. An upward trend is apparent for the winter snowfall in...The variation of winter snowfall intensity over Northeast China and its relationship with the autumn North Pacific SST are investigated for the period 1960–2012. An upward trend is apparent for the winter snowfall intensity over Northeast China during the last half-century, coinciding with an increasing autumn SST over the North Pacific. Their interannual correlation coefficient reaches up to 0.58 for the past five decades, and 0.42 after their trends are removed. Further analyses indicate that the warming SST during autumn may persist into winter. Correspondingly, large parts of East Asia and the North Pacific are dominated by an anticyclonic anomaly, which can induce an anomalous southeasterly over Northeast China, weaken the northerly wind, then warm the surface, increase the water vapor content and intensify snowfall events. Thus, the autumn North Pacific SST can be considered as a key predictor for winter snowfall events over Northeast China. Results from leaveone-out cross-validation and independent validation both show a significant correlation and a small RMSE between prediction and observation. Therefore, the autumn SST over the North Pacific is suggested as a potential predictor for winter snowfall intensity in Northeast China.展开更多
基金jointly supported by the National Basic Research Program of China[grant number 2012CB955401]National Natural Science Foundation of China[grant numbers 41305061 and 41210007]
文摘The variation of winter snowfall intensity over Northeast China and its relationship with the autumn North Pacific SST are investigated for the period 1960–2012. An upward trend is apparent for the winter snowfall intensity over Northeast China during the last half-century, coinciding with an increasing autumn SST over the North Pacific. Their interannual correlation coefficient reaches up to 0.58 for the past five decades, and 0.42 after their trends are removed. Further analyses indicate that the warming SST during autumn may persist into winter. Correspondingly, large parts of East Asia and the North Pacific are dominated by an anticyclonic anomaly, which can induce an anomalous southeasterly over Northeast China, weaken the northerly wind, then warm the surface, increase the water vapor content and intensify snowfall events. Thus, the autumn North Pacific SST can be considered as a key predictor for winter snowfall events over Northeast China. Results from leaveone-out cross-validation and independent validation both show a significant correlation and a small RMSE between prediction and observation. Therefore, the autumn SST over the North Pacific is suggested as a potential predictor for winter snowfall intensity in Northeast China.