期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于改进CEEMD和多域特征融合的1D-CNN降雹量级识别算法
1
作者 李鹏 杨山山 +3 位作者 徐文校 陈守静 于心远 徐永杰 《电子测量技术》 北大核心 2022年第17期134-143,共10页
为便于分析冰雹对社会生产造成的灾害影响,需要对降雹量级进行分类统计,对降雹量级进行定量分析,不仅可以为灾害评估提供依据,还可以对气象预报、虚报现象做出反馈。本文针对降雹声信号提出了一种改进的互补集合经验模态分解(CEEMD)重... 为便于分析冰雹对社会生产造成的灾害影响,需要对降雹量级进行分类统计,对降雹量级进行定量分析,不仅可以为灾害评估提供依据,还可以对气象预报、虚报现象做出反馈。本文针对降雹声信号提出了一种改进的互补集合经验模态分解(CEEMD)重构算法,重构后的信号最大程度地保持原有时域特征,也能对降雹声信号去噪处理。其次设计了一种多域特征融合1D-CNN模型,将重构后的原始数据、时域特征和频域特征分别作为1D-CNN的输入,在中间层进行特征拼接,最后输出分类器,结果显示本文设计的多域特征融合1D-CNN对降雹量级的识别率高达99.58%,相比于原始数据与传统1D-CNN模型识别率提高了8.75%。 展开更多
关键词 降雹量级 互补集合经验模态分解 特征提取 1D-CNN
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部