The simulated nitrogen deposition [control check (CBQ, 0 kg'hm^2 /a; low nitrogen (LN), 25 kg-hm^2 /a; medium nitrogen (MN), 50 kg-hm^2/a high nitrogen (HN), 150 kg·hm^2 /a] was performed from July 2014 ...The simulated nitrogen deposition [control check (CBQ, 0 kg'hm^2 /a; low nitrogen (LN), 25 kg-hm^2 /a; medium nitrogen (MN), 50 kg-hm^2/a high nitrogen (HN), 150 kg·hm^2 /a] was performed from July 2014 to August 2015 in the fotest-gtassland boundary in Zhuqudeng Village, Bujiu Township, Iinzhi City, Tibet Autonomous Regioii to analyze the activity of enzymes (invertase, catalase, ufease, amylase, cellukse, polyphenol oxidase, and p-glucosidase) in soil layers of 0-20 cm and 20-40 cm and explore die effect of different levels of nitrogen deposition on enzyme activity different layers of soiL The results showed tiiat' ① different levels of simulated nitrogen deposition had rematkable effects on sucrase, amylase, cellukse, polyphenol oxidase and p-gjucosidase in the soil layer of 0-20 cm (p 〈 0.05) and unrematkable effects on catalase and urease (p 〉 0.05); in the soil layer of 2CM0 cm, the response made by suctase, catalase, urease, amylase, cellulase, polyphenol oxidase and p-glucosidase to nitrogen deposition reached a significant level 〈 0.05).② In the soil layer of 0-20 cm, the activity of ufease and polyphenol oxidase reduced under LN treatment and enhanced under HN treatment, and the activity of invertase, catalase, amylase, cellulose, and p-glucosidase was inhibited by nitrogen deposition. ③In the soil layer of 2CM0 cm, the activity of polyphenol oxidase and p-glucosidase reduced under under LN treatment and enhanced under HN treatment, and the activity of invertase, catalase, urease, amylase, and cellulase was inhibited by nitrogen deposition. ④ With the deepening of the boundary soil layer (from 0-20 cm to 20-40 cm), urease and pucosidase made different responses to the different levels of nitrogen deposition, while invertase, catakse, amylase, cellulose, and polyphenol oxidase showed the same response to nitrogen deposition.展开更多
基金Sponsored by National Natural Science Fund of China(31360119,31460112)2015 Pilot Project of Excellent Agriculture and Forestry Talents Cultivation Program Reform
文摘The simulated nitrogen deposition [control check (CBQ, 0 kg'hm^2 /a; low nitrogen (LN), 25 kg-hm^2 /a; medium nitrogen (MN), 50 kg-hm^2/a high nitrogen (HN), 150 kg·hm^2 /a] was performed from July 2014 to August 2015 in the fotest-gtassland boundary in Zhuqudeng Village, Bujiu Township, Iinzhi City, Tibet Autonomous Regioii to analyze the activity of enzymes (invertase, catalase, ufease, amylase, cellukse, polyphenol oxidase, and p-glucosidase) in soil layers of 0-20 cm and 20-40 cm and explore die effect of different levels of nitrogen deposition on enzyme activity different layers of soiL The results showed tiiat' ① different levels of simulated nitrogen deposition had rematkable effects on sucrase, amylase, cellukse, polyphenol oxidase and p-gjucosidase in the soil layer of 0-20 cm (p 〈 0.05) and unrematkable effects on catalase and urease (p 〉 0.05); in the soil layer of 2CM0 cm, the response made by suctase, catalase, urease, amylase, cellulase, polyphenol oxidase and p-glucosidase to nitrogen deposition reached a significant level 〈 0.05).② In the soil layer of 0-20 cm, the activity of ufease and polyphenol oxidase reduced under LN treatment and enhanced under HN treatment, and the activity of invertase, catalase, amylase, cellulose, and p-glucosidase was inhibited by nitrogen deposition. ③In the soil layer of 2CM0 cm, the activity of polyphenol oxidase and p-glucosidase reduced under under LN treatment and enhanced under HN treatment, and the activity of invertase, catalase, urease, amylase, and cellulase was inhibited by nitrogen deposition. ④ With the deepening of the boundary soil layer (from 0-20 cm to 20-40 cm), urease and pucosidase made different responses to the different levels of nitrogen deposition, while invertase, catakse, amylase, cellulose, and polyphenol oxidase showed the same response to nitrogen deposition.