Background:Many disease-specific factors such as muscular weakness,increased muscle stiffness,varying postural strategies,and changes in postural reflexes have been shown to lead to postural instability and fall risk ...Background:Many disease-specific factors such as muscular weakness,increased muscle stiffness,varying postural strategies,and changes in postural reflexes have been shown to lead to postural instability and fall risk in people with Parkinson's disease(PD).Recently,analytical techniques,inspired by the dynamical systems perspective on movement control and coordination,have been used to examine the mechanisms underlying the dynamics of postural declines and the emergence of postural instabilities in people with PD.Methods:A wavelet-based technique was used to identify limit cycle oscillations(LCOs) in the anterior–posterior(AP) postural sway of people with mild PD(n = 10) compared to age-matched controls(n = 10).Participants stood on a foam and on a rigid surface while completing a dual task(speaking).Results:There was no significant difference in the root mean square of center of pressure between groups.Three out of 10 participants with PD demonstrated LCOs on the foam surface,while none in the control group demonstrated LCOs.An inverted pendulum model of bipedal stance was used to demonstrate that LCOs occur due to disease-specific changes associated with PD:time-delay and neuromuscular feedback gain.Conclusion:Overall,the LCO analysis and mathematical model appear to capture the subtle postural instabilities associated with mild PD.In addition,these findings provide insights into the mechanisms that lead to the emergence of unstable posture in patients with PD.展开更多
Close-range photogrammetry is to determine the shape and size of the object, instead of it's absolute position. Therefore, at first, any translation and rotation of the photogrammetric model of the object caused b...Close-range photogrammetry is to determine the shape and size of the object, instead of it's absolute position. Therefore, at first, any translation and rotation of the photogrammetric model of the object caused by whole geodesic, photographic and photogrammetric procedures in close-range photogrammetry could not be considered. However, it is necessary to analyze all the reasons which cause the deformations of the shape and size and to present their corresponding theories and equations. This situation, of course, is very different from the conventional topophotogrammetry. In this paper some specific characters of limit errors in close-range photogrammetry are presented in detail, including limit errors for calibration of interior elements for close-range cameras, the limit errors of relative and absolute orientations in close-range cameras, the limit errors of relative and absolute orientations in close-range photogrammetric procedures, and the limit errors of control works in close-range photogrammetry. A theoretical equation of calibration accuracy for close-range camerais given. Relating to the three examples in this paper, their theoretical accuracy requirement of interior elements of camera change in the scope of ±(0.005–0.350) mm. This discussion permits us to reduce accuracy requirement in calibration for an object with small relief, but the camera platform is located in violent vibration environment. Another theoretical equation of relative RMS of base lines (m S/S) and the equation RMS of start direction are also presented. It is proved that them S/S could be equal to the relative RMS ofm ΔX/ΔX. It is also proved that the permitting RMS of start direction is much bigger than the traditionally used one. Some useful equations of limit errors in close-range photogrammetry are presented as well. Suggestions mentioned above are perhaps beneficial for increasing efficiency, for reducing production cost.展开更多
基金the National Science Foundation for partial financial support for this project provided through the grant CMMI-1300632Purdue University for partial financial support for this project through a Research Incentive Grant
文摘Background:Many disease-specific factors such as muscular weakness,increased muscle stiffness,varying postural strategies,and changes in postural reflexes have been shown to lead to postural instability and fall risk in people with Parkinson's disease(PD).Recently,analytical techniques,inspired by the dynamical systems perspective on movement control and coordination,have been used to examine the mechanisms underlying the dynamics of postural declines and the emergence of postural instabilities in people with PD.Methods:A wavelet-based technique was used to identify limit cycle oscillations(LCOs) in the anterior–posterior(AP) postural sway of people with mild PD(n = 10) compared to age-matched controls(n = 10).Participants stood on a foam and on a rigid surface while completing a dual task(speaking).Results:There was no significant difference in the root mean square of center of pressure between groups.Three out of 10 participants with PD demonstrated LCOs on the foam surface,while none in the control group demonstrated LCOs.An inverted pendulum model of bipedal stance was used to demonstrate that LCOs occur due to disease-specific changes associated with PD:time-delay and neuromuscular feedback gain.Conclusion:Overall,the LCO analysis and mathematical model appear to capture the subtle postural instabilities associated with mild PD.In addition,these findings provide insights into the mechanisms that lead to the emergence of unstable posture in patients with PD.
文摘Close-range photogrammetry is to determine the shape and size of the object, instead of it's absolute position. Therefore, at first, any translation and rotation of the photogrammetric model of the object caused by whole geodesic, photographic and photogrammetric procedures in close-range photogrammetry could not be considered. However, it is necessary to analyze all the reasons which cause the deformations of the shape and size and to present their corresponding theories and equations. This situation, of course, is very different from the conventional topophotogrammetry. In this paper some specific characters of limit errors in close-range photogrammetry are presented in detail, including limit errors for calibration of interior elements for close-range cameras, the limit errors of relative and absolute orientations in close-range cameras, the limit errors of relative and absolute orientations in close-range photogrammetric procedures, and the limit errors of control works in close-range photogrammetry. A theoretical equation of calibration accuracy for close-range camerais given. Relating to the three examples in this paper, their theoretical accuracy requirement of interior elements of camera change in the scope of ±(0.005–0.350) mm. This discussion permits us to reduce accuracy requirement in calibration for an object with small relief, but the camera platform is located in violent vibration environment. Another theoretical equation of relative RMS of base lines (m S/S) and the equation RMS of start direction are also presented. It is proved that them S/S could be equal to the relative RMS ofm ΔX/ΔX. It is also proved that the permitting RMS of start direction is much bigger than the traditionally used one. Some useful equations of limit errors in close-range photogrammetry are presented as well. Suggestions mentioned above are perhaps beneficial for increasing efficiency, for reducing production cost.