To study the distribution and dissipation of braking power of wet multidisc brake and determine thermal load and thermal flux distribution between mated discs, the concept of distributing brake power four times was pu...To study the distribution and dissipation of braking power of wet multidisc brake and determine thermal load and thermal flux distribution between mated discs, the concept of distributing brake power four times was put forward. The third and the fourth distribution of brake power were calculated by using finite element(FE) software ANSYS. The third and the fourth distribution of wet multidisc brake are mainly related to material characteristics of discs during emergency braking, while most of the braking power is carried off during continuous braking. Basis is provided for further analysis of disc failure and applicability of different friction materials.展开更多
A rectangular finite element for laminated plate with bonded and/or embedded piezoelectric sensors and actuators is developed based on the variational principle and the first order shear deformation theory. The elemen...A rectangular finite element for laminated plate with bonded and/or embedded piezoelectric sensors and actuators is developed based on the variational principle and the first order shear deformation theory. The element has four-node, 20-degrees-of-freedom with one potential degree of freedom for each piezoelectric layer to represent the piezoelectric behavior. The higher order derivation of deflection is obtained by using the normal rotation expressions to take the effects of transverse shear deformation into considerations. The finite element can accurately simulate the deformation of both thin and moderately thick plates. A Fortran program is written and a number of benchmark tests are exercised to verify its effectiveness. Results are compared well with the existing data. The unbalanced composite with piezoelectric layers is then analyzed by using the model. Results show that the changes of the ratio between the thickness of positive angle layers and the negative angle layers have an effect on the deformation of the structure under the same electric loading.展开更多
According to some observed dama ge phenomena in the smart structure systems, the issues related to the damage and failures of smart structures are addressed in this paper. A few possible damage patterns and the def...According to some observed dama ge phenomena in the smart structure systems, the issues related to the damage and failures of smart structures are addressed in this paper. A few possible damage patterns and the definition of the failure of the smart structures are given. It is pointed out that more attentions should be paid to the functional failures o f smart structures. The effects on the control the static deformation due to par tial debonding of PZT actuators are analyzed by the finite element method. Preli minary numerical results show that partial debonding of PZT actuators may have a p preciate reduction on their actuating ability thus reducing the control ability and accuracy of the smart structures.展开更多
The effectiveness of a combination of fault current limiter and thyristor controlled braking resistor on power system stability enhancement and damping turbine shaft torsional oscillations has been studied. If both de...The effectiveness of a combination of fault current limiter and thyristor controlled braking resistor on power system stability enhancement and damping turbine shaft torsional oscillations has been studied. If both devices operate at the same bus, the stabilization control scheme can be carried out continuously and with flexibility. As a result, the fault currents are limited, and the generator disturbances and the turbine shaft torsional oscillations are converged quickly. In this paper, the effectiveness of the combination of both devices has been demonstrated by considering 3LG (three-lines-to-ground) fault in a two-machine infinite bus system. Also, temperature rise effect of both devices with various resistance values and weights has been demonstrated. Simulation results indicate a significant power system stability enhancement and damping turbine shaft torsional oscillations as well as with allowable temperature rise.展开更多
We further develop the lattice Boltzmann (LB) model [Physica A 382 (2007) 502] for compressible flows from two aspects. Firstly, we modify the Bhatnagar Gross Krook (BGK) collision term in the LB equation, which...We further develop the lattice Boltzmann (LB) model [Physica A 382 (2007) 502] for compressible flows from two aspects. Firstly, we modify the Bhatnagar Gross Krook (BGK) collision term in the LB equation, which makes the model suitable for simulating flows with different Prandtl numbers. Secondly, the flux limiter finite difference (FLFD) scheme is employed to calculate the convection term of the LB equation, which makes the unphysical oscillations at discontinuities be effectively suppressed and the numerical dissipations be significantly diminished. The proposed model is validated by recovering results of some well-known benchmarks, including (i) The thermal Couette flow; (ii) One- and two-dlmenslonal FLiemann problems. Good agreements are obtained between LB results and the exact ones or previously reported solutions. The flexibility, together with the high accuracy of the new model, endows the proposed model considerable potential for tracking some long-standing problems and for investigating nonlinear nonequilibrium complex systems.展开更多
In coalmines of China, horizontal directional drilling (HDD) is an increasingly popular method for underground in-seam gas drainage. Numerical simulation, especially finite element analysis, is often used as an effe...In coalmines of China, horizontal directional drilling (HDD) is an increasingly popular method for underground in-seam gas drainage. Numerical simulation, especially finite element analysis, is often used as an effective method to improve HDD operation. These improvements focus on rock-breaking efficiency, directional precision, stability of the borehole wall, and reliability of the drill equipment. On the basis of underground drilling characteristics, typical numerical simulation exam- ples in drilling techniques and equipment are summarized and analyzed. In the end, the future development trends of numerical simulation in underground in-seam drilling are proposed.展开更多
V-type ultrasonic linear motor fabricated using a simple punching technique was proposed to utilize as an actuator of small precision machine.The stator of the motor is composed of a thin elastic body and four ceramic...V-type ultrasonic linear motor fabricated using a simple punching technique was proposed to utilize as an actuator of small precision machine.The stator of the motor is composed of a thin elastic body and four ceramics attached to the upper and bottom areas of the body.The ceramics have each direction of polarization.When two harmonic voltages with a 90° phase difference are applied to the ceramics,symmetric and anti-symmetric displacements will generate at the tip to produce an elliptical motion.A finite element analysis(ATILA) was conducted to simulate the motion pattern for the contact tip of the stator.To develop a model that generates the maximum displacement at contact tip,the FEM program was used for various lengths.In addition,an optimal model was chosen by considering the magnitude and shape of the displacement according to changes in frequency.The maximum elliptical displacement is shown by W2L11 model,which has a ratio of ceramic width to length of 1:5.5.However,the displacement of the contact tip is reduced by the bucking phenomenon if the ratio is larger than 1:6.展开更多
This paper presents the research on the laws of systematic-parameter dependent variation in the vibration amplitude of drum-brake limit cycle oscillations (LCO). We established a two-degree non-linear dynamic model to...This paper presents the research on the laws of systematic-parameter dependent variation in the vibration amplitude of drum-brake limit cycle oscillations (LCO). We established a two-degree non-linear dynamic model to describe the low-frequency vibration of the drum brake, applied the centre manifold theory to simplify the system, and obtained the LCO amplitude by calculating the normal form of the simplified system at the Hopf bifurcation point. It is indicated that when the friction coefficient is smaller than the friction coefficient at the bifurcation point, the amplitude decreases; whereas with a friction coefficient larger than the friction coefficient of bifurcation point, LCO occurs. The results suggest that it is applicable to suppress the LCO amplitude by changing systematic parameters, and thus improve the safety and ride comfort when applying brake. These findings can be applied to guiding the design of drum brakes.展开更多
Aiming at the major failure mode of prestressed concrete cylinder pipes (PCCP),namely the fracture of prestressed steel wires,the broken wire detection technology based on orthogonal electromagnetic principle is studi...Aiming at the major failure mode of prestressed concrete cylinder pipes (PCCP),namely the fracture of prestressed steel wires,the broken wire detection technology based on orthogonal electromagnetic principle is studied. The detection system model is established and optimized by using COMSOL finite element simulation software. Furthermore,the theoretical analysis of the wire-breaking effect is carried out. The influence of factors on broken wire signal characteristics such as edge effect,circumferential relative position of the detector and broken wires,excitation frequency and relative permeability of steel wires is analyzed,which provides a theoretical guidance for the field detection. The influence of the steel cylinder structure on the simulation results is analyzed,which provides a reference for the improvement of calculation efficiency. The corresponding detection system is designed and implemented. Concretely,a high-voltage and high-power sinusoidal signal coil drive scheme based on sinusoidal pulse width modulation technology and an intelligent power module is innovatively proposed and the corresponding protection circuit is designed. The broken wire signal could be effectively extracted through a lock-in amplifier. The experimental results show that this system can effectively identify the broken wires with low cost.展开更多
In view of the influence and harm of low frequency vibration environment on the structure of spaceflight products,a low frequency dynamic study method for piezoelectric sensor based on the dynamic system of sinusoidal...In view of the influence and harm of low frequency vibration environment on the structure of spaceflight products,a low frequency dynamic study method for piezoelectric sensor based on the dynamic system of sinusoidal pressure is proposed.This method uses a sinusoidal pressure dynamic system with two-way dual channel import and export synchronization technology to study the low frequency characteristics of a piezoelectric sensor of PCB company,and its lower cut-off frequency is 0.26 Hz.It is also studied that when the frequency of the measured vibration or shock signal is 1-200 kHz,the error range of signal positive pressure action time is 4.87%-0.03%.The dynamic compensation for the low frequency of the vibration sensor is carried out,and the compensation effect is good.展开更多
A real case of a steel lattice shell suffering a fire was studied. Based on the theory of field modeling, fire dynamic simulator (FDS) was used to identify the temperature field. The damage mechanism of the structure ...A real case of a steel lattice shell suffering a fire was studied. Based on the theory of field modeling, fire dynamic simulator (FDS) was used to identify the temperature field. The damage mechanism of the structure was determined by FEM analysis. After damage assessment, the shell was repaired with the pipe-encasement method. Finally, field test was employed to check the capacity of the structure after repair. The numerical study results indicate that the damage assessment agrees well with field inspection, verifying the accuracy of fire numerical simulation and FEM analysis. The field test results prove that the pipe-encasement method is secure and reasonable, and the repaired shell is safe.展开更多
In this paper, a new flux limiter scheme with the splitting technique is successfully incorporated into a multiple-relaxation-time lattice Boltzmann (LB) model for shacked compressible flows. The proposed flux limit...In this paper, a new flux limiter scheme with the splitting technique is successfully incorporated into a multiple-relaxation-time lattice Boltzmann (LB) model for shacked compressible flows. The proposed flux limiter scheme is efficient in decreasing the artificial oscillations and numerical diffusion around the interface. Due to the kinetic nature, some interface problems being difficult to handle at the macroscopic level can be modeled more naturally through the LB method. Numerical simulations for the Richtmyer-Meshkov instability show that with the new model the computed interfaces are smoother and more consistent with physical analysis. The growth rates of bubble and spike present a satisfying agreement with the theoretical predictions and other numerical simulations.展开更多
The major purpose of this paper is to reduce the laser directional deviation of laser designator on a moving platform.A new method of inhibiting the laser beam positional error caused by platform movement and vibratio...The major purpose of this paper is to reduce the laser directional deviation of laser designator on a moving platform.A new method of inhibiting the laser beam positional error caused by platform movement and vibration is proposed.In this method,quadrant detector(QD)and fast steering mirror are combined to measure the angle between laser designator axis and the line-of-sight of the target,then a control signal composed with the angle errors is generated to aim the axis of the laser designator at the target steadily.This is a real time processing method and it is suitable for airborne laser-guided weapons with second-class guiding time.展开更多
文摘To study the distribution and dissipation of braking power of wet multidisc brake and determine thermal load and thermal flux distribution between mated discs, the concept of distributing brake power four times was put forward. The third and the fourth distribution of brake power were calculated by using finite element(FE) software ANSYS. The third and the fourth distribution of wet multidisc brake are mainly related to material characteristics of discs during emergency braking, while most of the braking power is carried off during continuous braking. Basis is provided for further analysis of disc failure and applicability of different friction materials.
文摘A rectangular finite element for laminated plate with bonded and/or embedded piezoelectric sensors and actuators is developed based on the variational principle and the first order shear deformation theory. The element has four-node, 20-degrees-of-freedom with one potential degree of freedom for each piezoelectric layer to represent the piezoelectric behavior. The higher order derivation of deflection is obtained by using the normal rotation expressions to take the effects of transverse shear deformation into considerations. The finite element can accurately simulate the deformation of both thin and moderately thick plates. A Fortran program is written and a number of benchmark tests are exercised to verify its effectiveness. Results are compared well with the existing data. The unbalanced composite with piezoelectric layers is then analyzed by using the model. Results show that the changes of the ratio between the thickness of positive angle layers and the negative angle layers have an effect on the deformation of the structure under the same electric loading.
文摘According to some observed dama ge phenomena in the smart structure systems, the issues related to the damage and failures of smart structures are addressed in this paper. A few possible damage patterns and the definition of the failure of the smart structures are given. It is pointed out that more attentions should be paid to the functional failures o f smart structures. The effects on the control the static deformation due to par tial debonding of PZT actuators are analyzed by the finite element method. Preli minary numerical results show that partial debonding of PZT actuators may have a p preciate reduction on their actuating ability thus reducing the control ability and accuracy of the smart structures.
文摘The effectiveness of a combination of fault current limiter and thyristor controlled braking resistor on power system stability enhancement and damping turbine shaft torsional oscillations has been studied. If both devices operate at the same bus, the stabilization control scheme can be carried out continuously and with flexibility. As a result, the fault currents are limited, and the generator disturbances and the turbine shaft torsional oscillations are converged quickly. In this paper, the effectiveness of the combination of both devices has been demonstrated by considering 3LG (three-lines-to-ground) fault in a two-machine infinite bus system. Also, temperature rise effect of both devices with various resistance values and weights has been demonstrated. Simulation results indicate a significant power system stability enhancement and damping turbine shaft torsional oscillations as well as with allowable temperature rise.
基金Supported by the Science Foundations of LCP and CAEP under Grant Nos. 2009A0102005 and 2009B0101012National Natural Science Foundation of China under Grant Nos. 11075021, 11074300, and 11074303+3 种基金National Basic Research Program (973 Program) under Grant No. 2007CB815105Fundamental Research Funds for the Central University under Grant No. 2010YS03Technology Support Program of LangFang under Grant Nos. 2010011029/30/31Science Foundation of NCIAE under Grant No. 2008-ky-13
文摘We further develop the lattice Boltzmann (LB) model [Physica A 382 (2007) 502] for compressible flows from two aspects. Firstly, we modify the Bhatnagar Gross Krook (BGK) collision term in the LB equation, which makes the model suitable for simulating flows with different Prandtl numbers. Secondly, the flux limiter finite difference (FLFD) scheme is employed to calculate the convection term of the LB equation, which makes the unphysical oscillations at discontinuities be effectively suppressed and the numerical dissipations be significantly diminished. The proposed model is validated by recovering results of some well-known benchmarks, including (i) The thermal Couette flow; (ii) One- and two-dlmenslonal FLiemann problems. Good agreements are obtained between LB results and the exact ones or previously reported solutions. The flexibility, together with the high accuracy of the new model, endows the proposed model considerable potential for tracking some long-standing problems and for investigating nonlinear nonequilibrium complex systems.
基金Supported by the National Natural Science Foundation of China (50805010) the Natural Science Foundation of Shaanxi Province (2011JM70 17)
文摘In coalmines of China, horizontal directional drilling (HDD) is an increasingly popular method for underground in-seam gas drainage. Numerical simulation, especially finite element analysis, is often used as an effective method to improve HDD operation. These improvements focus on rock-breaking efficiency, directional precision, stability of the borehole wall, and reliability of the drill equipment. On the basis of underground drilling characteristics, typical numerical simulation exam- ples in drilling techniques and equipment are summarized and analyzed. In the end, the future development trends of numerical simulation in underground in-seam drilling are proposed.
基金Project supported by the Second Stage of Brain Korea 21 ProjectProject(2009-0088570) supported by the National Research Foundation of Korea
文摘V-type ultrasonic linear motor fabricated using a simple punching technique was proposed to utilize as an actuator of small precision machine.The stator of the motor is composed of a thin elastic body and four ceramics attached to the upper and bottom areas of the body.The ceramics have each direction of polarization.When two harmonic voltages with a 90° phase difference are applied to the ceramics,symmetric and anti-symmetric displacements will generate at the tip to produce an elliptical motion.A finite element analysis(ATILA) was conducted to simulate the motion pattern for the contact tip of the stator.To develop a model that generates the maximum displacement at contact tip,the FEM program was used for various lengths.In addition,an optimal model was chosen by considering the magnitude and shape of the displacement according to changes in frequency.The maximum elliptical displacement is shown by W2L11 model,which has a ratio of ceramic width to length of 1:5.5.However,the displacement of the contact tip is reduced by the bucking phenomenon if the ratio is larger than 1:6.
基金the Natural Science Foundation of China (No. 50075029)
文摘This paper presents the research on the laws of systematic-parameter dependent variation in the vibration amplitude of drum-brake limit cycle oscillations (LCO). We established a two-degree non-linear dynamic model to describe the low-frequency vibration of the drum brake, applied the centre manifold theory to simplify the system, and obtained the LCO amplitude by calculating the normal form of the simplified system at the Hopf bifurcation point. It is indicated that when the friction coefficient is smaller than the friction coefficient at the bifurcation point, the amplitude decreases; whereas with a friction coefficient larger than the friction coefficient of bifurcation point, LCO occurs. The results suggest that it is applicable to suppress the LCO amplitude by changing systematic parameters, and thus improve the safety and ride comfort when applying brake. These findings can be applied to guiding the design of drum brakes.
基金National Natural Science Foundation of China(No.61304244)
文摘Aiming at the major failure mode of prestressed concrete cylinder pipes (PCCP),namely the fracture of prestressed steel wires,the broken wire detection technology based on orthogonal electromagnetic principle is studied. The detection system model is established and optimized by using COMSOL finite element simulation software. Furthermore,the theoretical analysis of the wire-breaking effect is carried out. The influence of factors on broken wire signal characteristics such as edge effect,circumferential relative position of the detector and broken wires,excitation frequency and relative permeability of steel wires is analyzed,which provides a theoretical guidance for the field detection. The influence of the steel cylinder structure on the simulation results is analyzed,which provides a reference for the improvement of calculation efficiency. The corresponding detection system is designed and implemented. Concretely,a high-voltage and high-power sinusoidal signal coil drive scheme based on sinusoidal pulse width modulation technology and an intelligent power module is innovatively proposed and the corresponding protection circuit is designed. The broken wire signal could be effectively extracted through a lock-in amplifier. The experimental results show that this system can effectively identify the broken wires with low cost.
文摘In view of the influence and harm of low frequency vibration environment on the structure of spaceflight products,a low frequency dynamic study method for piezoelectric sensor based on the dynamic system of sinusoidal pressure is proposed.This method uses a sinusoidal pressure dynamic system with two-way dual channel import and export synchronization technology to study the low frequency characteristics of a piezoelectric sensor of PCB company,and its lower cut-off frequency is 0.26 Hz.It is also studied that when the frequency of the measured vibration or shock signal is 1-200 kHz,the error range of signal positive pressure action time is 4.87%-0.03%.The dynamic compensation for the low frequency of the vibration sensor is carried out,and the compensation effect is good.
基金Supported by National Natural Science Foundation of China (No. 50778122)
文摘A real case of a steel lattice shell suffering a fire was studied. Based on the theory of field modeling, fire dynamic simulator (FDS) was used to identify the temperature field. The damage mechanism of the structure was determined by FEM analysis. After damage assessment, the shell was repaired with the pipe-encasement method. Finally, field test was employed to check the capacity of the structure after repair. The numerical study results indicate that the damage assessment agrees well with field inspection, verifying the accuracy of fire numerical simulation and FEM analysis. The field test results prove that the pipe-encasement method is secure and reasonable, and the repaired shell is safe.
基金Supported by the Science Foundation of Laboratory of Computational Physics, Science Foundation of China Academy of Engineering Physics under Grant Nos. 2009A0102005, 2009B0101012National Basic Research Program of China under Grant No. 2007CB815105+1 种基金National Natural Science Foundation of China under Grant Nos. 11074300, 11075021, and 11074303the Fundamental Research Funds for the Central Universities under Grant No. 2010YS03
文摘In this paper, a new flux limiter scheme with the splitting technique is successfully incorporated into a multiple-relaxation-time lattice Boltzmann (LB) model for shacked compressible flows. The proposed flux limiter scheme is efficient in decreasing the artificial oscillations and numerical diffusion around the interface. Due to the kinetic nature, some interface problems being difficult to handle at the macroscopic level can be modeled more naturally through the LB method. Numerical simulations for the Richtmyer-Meshkov instability show that with the new model the computed interfaces are smoother and more consistent with physical analysis. The growth rates of bubble and spike present a satisfying agreement with the theoretical predictions and other numerical simulations.
基金Postdoctoral Science Foundation of China(0100W016309)
文摘The major purpose of this paper is to reduce the laser directional deviation of laser designator on a moving platform.A new method of inhibiting the laser beam positional error caused by platform movement and vibration is proposed.In this method,quadrant detector(QD)and fast steering mirror are combined to measure the angle between laser designator axis and the line-of-sight of the target,then a control signal composed with the angle errors is generated to aim the axis of the laser designator at the target steadily.This is a real time processing method and it is suitable for airborne laser-guided weapons with second-class guiding time.