结合混合微波集成电路(HMIC)工艺和砷化镓单片微波集成电路(MMIC)工艺各自优势,设计制作了一款小型化大功率S波段平衡式限幅MMIC低噪声放大器。采用平衡式结构,提高了限幅功率容量和可靠性。由于金丝键合线的等效电感具有更高Q值,...结合混合微波集成电路(HMIC)工艺和砷化镓单片微波集成电路(MMIC)工艺各自优势,设计制作了一款小型化大功率S波段平衡式限幅MMIC低噪声放大器。采用平衡式结构,提高了限幅功率容量和可靠性。由于金丝键合线的等效电感具有更高Q值,低噪声放大器单片的输入匹配采用外部金丝键合线匹配,有效降低了低噪声放大器单片的噪声系数。限幅器采用混合集成工艺制成,能够耐受较大功率。利用微波仿真软件,设计制作了兰格(Lange)电桥、限幅电路和低噪声放大器输入匹配等电路。最终产品尺寸仅为22 mm×16 mm×6 mm,在2.7~3.5 GHz内增益27~28 d B,噪声系数小于1.3 d B,驻波比小于1.3,该平衡限幅MMIC低噪声放大器可承受功率超过200 W、占空比为15%的脉冲功率冲击。展开更多
文摘结合混合微波集成电路(HMIC)工艺和砷化镓单片微波集成电路(MMIC)工艺各自优势,设计制作了一款小型化大功率S波段平衡式限幅MMIC低噪声放大器。采用平衡式结构,提高了限幅功率容量和可靠性。由于金丝键合线的等效电感具有更高Q值,低噪声放大器单片的输入匹配采用外部金丝键合线匹配,有效降低了低噪声放大器单片的噪声系数。限幅器采用混合集成工艺制成,能够耐受较大功率。利用微波仿真软件,设计制作了兰格(Lange)电桥、限幅电路和低噪声放大器输入匹配等电路。最终产品尺寸仅为22 mm×16 mm×6 mm,在2.7~3.5 GHz内增益27~28 d B,噪声系数小于1.3 d B,驻波比小于1.3,该平衡限幅MMIC低噪声放大器可承受功率超过200 W、占空比为15%的脉冲功率冲击。
文摘限幅低噪声放大器(Low Noise Amplifier,LNA)是微波收发组件中的关键部件,用于对接收的射频信号进行放大。接收增益是限幅LNA的关键指标,增益下降可导致微波收发组件功能失效。综合采用外观检查、万用表测量、X光检查、扫描电子显微镜(Scanning Electron Microscope,SEM)等分析手段对某型限幅LNA增益下降的原因进行了分析,确定了故障失效的原因。结果表明,增益下降是由于工艺装配过程PIN二极管芯片与管壳安全间距不足导致。研究结果对类似产品的生产装配、检测检验、失效分析有一定的参考意义。