Experimental study on the fundamental behavior of box shape steel reinforced concrete (SRC) beams was conducted. Seven 1 : 3 scale model SRC beams were tested to failure. The experimental results indicate that the ...Experimental study on the fundamental behavior of box shape steel reinforced concrete (SRC) beams was conducted. Seven 1 : 3 scale model SRC beams were tested to failure. The experimental results indicate that the flexural strength increases with the increase of the ratio of flexural reinforcement and the thickness of flange of the shape steel; the shear strength increases with the increase in the thickness of the web of the shape steel. Concrete filled in the box shape steel can prevent the early failure of specimens due to the buckling of the box shape steel, and increase the ultimate load. Measures should be made to strengthen the connection and co-work between the shape steel and the concrete. Formulae for flexural and shear strength of the composite beams are proposed, and the calculated results are in good agreement with the experimental results. In general, the box shape SRC beam is a kind of ductile member, and it is suitable for extensive engineering application.展开更多
Dry jet mixing (DJM) for soft soil stabilization has been widely used since 1980s. The quality and strength of stabilized columns are fundamental parameters to evaluate the stabilization work. This paper presents the ...Dry jet mixing (DJM) for soft soil stabilization has been widely used since 1980s. The quality and strength of stabilized columns are fundamental parameters to evaluate the stabilization work. This paper presents the standard penetration test (SPT) method and its test results on cement columns. It is shown that SPT is an effective and simple method for inspecting and evaluating cement columns. The strength characteristics along the length of the column, a good correction between SPT blow count and the unconfined compressive strength are achieved.展开更多
Many construction and post-construction problems have been reported in the literature when saline soils have been used without understanding of their abnormal behavior,especially their inferior bearing capacity in the...Many construction and post-construction problems have been reported in the literature when saline soils have been used without understanding of their abnormal behavior,especially their inferior bearing capacity in the natural condition.The strength of these soils further decreases on soaking.Saline soil deposits cover extensive areas in central Iran and are associated with geotechnical problems such as excessive differential settlement,susceptibility to strength loss and collapse upon wetting.Because of these characteristics,some of the roads constructed on saline soils in Taleghan area have exhibited deterioration in the form of raveling,cracking and landslides.The main objective of this work is to improve the load-bearing capacity of pavements constructed on Taleghan saline soils using lime and micro silica.Soil samples from Hashtgerd-Taleghan road were collected and tested for improving their properties using lime and micro silica at different dosages ranging from 0 to 6%.The load-bearing capacity of stabilized soil mixtures was evaluated using California Bearing Ratio(CBR) and unconfined compressive strength tests.The test results indicate that the lime improves the performance of soil significantly.The addition of 2% lime with 3% micro silica has satisfied the strength-deformation requirements.Therefore,improved soil can be used as a good subbase in flexible pavements.展开更多
Hot granule medium pressure forming (HGMF) process is a new process in which granule medium replaces the medium in existing flexible-die hot forming process, such as liquids, gases or viscous medium. Hot forming of ...Hot granule medium pressure forming (HGMF) process is a new process in which granule medium replaces the medium in existing flexible-die hot forming process, such as liquids, gases or viscous medium. Hot forming of light alloy sheet parts can be realized based on the properties of granule medium, such as withstanding high temperature and pressure, filling well, sealing and loading easily. In this work, the forming of AA7075 cylindrical parts by HGMF process is taken as an example to establish the constitutive relation and forming limit diagram (FLD) of AA7075 sheet which is related to temperature by hot uniaxial tensile test of sheet metal. Based on the assumption that granule medium is applied to extended Drucker-Prager linear material model, the finite element model of HGMF process is established and the effect of technological parameters, such as forming temperature, blank-holder gap and drawing ratio, on the sheet metal formability, is studied. The limit drawing ratio curve of AA7075 cylindrical parts at forming temperature of 175-300 ℃ is obtained by HGMF process test, and the limit drawing ratio reaches the maximum value of 1.71 at 250 ℃. The results of numerical simulation are consistent with the results of process test, and the forming force, distribution of wall thichness and form of instability are predicted correctly, which provides reference for the application of HGMF process.展开更多
In order to investigate the effect o f some factors on the unconfined compressive strength(UCS)for composite soil stabilizer-stabilized gravel soil(CSSSGS),the orthogonal test is adopted to set up the experimental sch...In order to investigate the effect o f some factors on the unconfined compressive strength(UCS)for composite soil stabilizer-stabilized gravel soil(CSSSGS),the orthogonal test is adopted to set up the experimental scheme.Three levels o f each factor armconsidered to obtain the change laws o f UCS,in which the binder dosages are8%,10%,and12%;the curing times ae7,14and21d;the gradation nae0.3,0.35and0.4;and the degrees of compaction are95%,97%,and99%.The range analysis clearly indicates that the influence degree o f the four factors on UCS is in such an order:dosage,age,gradation,and degree o f compaction.The variance analysis shows that only the composite soil stabilizer dosage can significantly affect UCS.In road construction,the examination o f composite soil stabilizer dosage and base-course maintenance should be given much more attention to obtain satisfactory base-course strength,compared w ith gradation floating and the change of degree o f compaction.展开更多
Pressure plate instrument is employed during drying, and unconfined compressive strength test is performed on the unsaturated specimen. Curves of shear force versus shear displacement, and curves of saturation degree ...Pressure plate instrument is employed during drying, and unconfined compressive strength test is performed on the unsaturated specimen. Curves of shear force versus shear displacement, and curves of saturation degree versus time are investigated. The results show that the specimens with similar curves of saturation degree versus time have nearly identical mechanical behavior. In particular, the uniform specimens should be chosen within the lower equilibrium saturation degree because steady test results are presented. Further, the conclusion is verified by the repeated test. Thus, the method for distinguishing the uniform unsaturated specimen is obtained. In the light of the method, an improved test process is proposed. The uniform specimens should be chosen by this method under the specific matric suction, and then shear tests are carried out on the chosen unsaturated specimen. Namely, initial value of unsaturated soil is not zero matric suction but a specific suction.展开更多
In order to simulate and study the erosion effect process such as the changes of corrosive depth and unconfined compression strength of cemented soil sample in earlier period from 0 day to 60 days, a series of tests i...In order to simulate and study the erosion effect process such as the changes of corrosive depth and unconfined compression strength of cemented soil sample in earlier period from 0 day to 60 days, a series of tests including unconfined compressive tests, measuring the blocks' sizes, and taking photos, are conducted on the cemented soil blocks which were cured in different concentrations of H2SO4 solutions. The results of tests show that the corrosive depth is increasing and the unconfined compression strength is decreasing with the increase of H2SO4 solution concentration at the same erosion time, and the corrosive degree is increasing with the corrosive time. In the earlier state, the corrosive effect is serious, but the effect becomes slow in the later state in the same concentrated H2SO4 solution. After take statistics the date, a coefficient a is put forward to predict the reduction of the compressive strength of cemented soil in various concentration of H2SO4 solution, which could be used in practical design.展开更多
It is well known that the finer particle of cementing material has more pozzolanic reaction than the coarser. This paper investigates the shear properties of geocomposite soil with various particle sizes of bottom ash...It is well known that the finer particle of cementing material has more pozzolanic reaction than the coarser. This paper investigates the shear properties of geocomposite soil with various particle sizes of bottom ash. The geocomposite soil (GCS) in this study consists of dredged soil, bottom ash and cement for recycling dredged soil and bottom ash. Three different particle sizes of bottom ash passing No. 4 sieve, No. 40 sieve, and No. 140 sieve were added into soil mixtures, namely as GCS 4, GCS 40, and GCS 140, respectively. These bottom ashes have the same chemical component except for different particle sizes. Several mixtures were prepared with various contents of bottom ash ranging from 0 to 100% at 50% intervals by the weight of dry dredged soil. In this study, several series of unconfined compression test were carried out on the mixtures with various curing times. It is found that the unconfined compressive strength is a function of curing time and bottom ash content. For the curing time less than 28 days, the GCS 4 has higher unconfined compressive strength than the GCS 40 and GCS 140 due to the interlocking effect and friction between the particles with angular shape of coarse bottom ash. For the curing time larger than 28 days, the GCS 140 has higher strength due to the pozzolanic reaction. However, the ratios of secant modulus to unconfined compressive strength of three mixtures are almost the same, and in range of (46-100), regardless of mixing condition and curing time.展开更多
文摘Experimental study on the fundamental behavior of box shape steel reinforced concrete (SRC) beams was conducted. Seven 1 : 3 scale model SRC beams were tested to failure. The experimental results indicate that the flexural strength increases with the increase of the ratio of flexural reinforcement and the thickness of flange of the shape steel; the shear strength increases with the increase in the thickness of the web of the shape steel. Concrete filled in the box shape steel can prevent the early failure of specimens due to the buckling of the box shape steel, and increase the ultimate load. Measures should be made to strengthen the connection and co-work between the shape steel and the concrete. Formulae for flexural and shear strength of the composite beams are proposed, and the calculated results are in good agreement with the experimental results. In general, the box shape SRC beam is a kind of ductile member, and it is suitable for extensive engineering application.
文摘Dry jet mixing (DJM) for soft soil stabilization has been widely used since 1980s. The quality and strength of stabilized columns are fundamental parameters to evaluate the stabilization work. This paper presents the standard penetration test (SPT) method and its test results on cement columns. It is shown that SPT is an effective and simple method for inspecting and evaluating cement columns. The strength characteristics along the length of the column, a good correction between SPT blow count and the unconfined compressive strength are achieved.
文摘Many construction and post-construction problems have been reported in the literature when saline soils have been used without understanding of their abnormal behavior,especially their inferior bearing capacity in the natural condition.The strength of these soils further decreases on soaking.Saline soil deposits cover extensive areas in central Iran and are associated with geotechnical problems such as excessive differential settlement,susceptibility to strength loss and collapse upon wetting.Because of these characteristics,some of the roads constructed on saline soils in Taleghan area have exhibited deterioration in the form of raveling,cracking and landslides.The main objective of this work is to improve the load-bearing capacity of pavements constructed on Taleghan saline soils using lime and micro silica.Soil samples from Hashtgerd-Taleghan road were collected and tested for improving their properties using lime and micro silica at different dosages ranging from 0 to 6%.The load-bearing capacity of stabilized soil mixtures was evaluated using California Bearing Ratio(CBR) and unconfined compressive strength tests.The test results indicate that the lime improves the performance of soil significantly.The addition of 2% lime with 3% micro silica has satisfied the strength-deformation requirements.Therefore,improved soil can be used as a good subbase in flexible pavements.
基金Projects(5130538651305385)supported by the National Natural Science Foundation of ChinaProject(E2013203093)supported by the Natural Science Foundation of Hebei Province,China
文摘Hot granule medium pressure forming (HGMF) process is a new process in which granule medium replaces the medium in existing flexible-die hot forming process, such as liquids, gases or viscous medium. Hot forming of light alloy sheet parts can be realized based on the properties of granule medium, such as withstanding high temperature and pressure, filling well, sealing and loading easily. In this work, the forming of AA7075 cylindrical parts by HGMF process is taken as an example to establish the constitutive relation and forming limit diagram (FLD) of AA7075 sheet which is related to temperature by hot uniaxial tensile test of sheet metal. Based on the assumption that granule medium is applied to extended Drucker-Prager linear material model, the finite element model of HGMF process is established and the effect of technological parameters, such as forming temperature, blank-holder gap and drawing ratio, on the sheet metal formability, is studied. The limit drawing ratio curve of AA7075 cylindrical parts at forming temperature of 175-300 ℃ is obtained by HGMF process test, and the limit drawing ratio reaches the maximum value of 1.71 at 250 ℃. The results of numerical simulation are consistent with the results of process test, and the forming force, distribution of wall thichness and form of instability are predicted correctly, which provides reference for the application of HGMF process.
基金The National Natural Science Foundation of China(No.51108081)
文摘In order to investigate the effect o f some factors on the unconfined compressive strength(UCS)for composite soil stabilizer-stabilized gravel soil(CSSSGS),the orthogonal test is adopted to set up the experimental scheme.Three levels o f each factor armconsidered to obtain the change laws o f UCS,in which the binder dosages are8%,10%,and12%;the curing times ae7,14and21d;the gradation nae0.3,0.35and0.4;and the degrees of compaction are95%,97%,and99%.The range analysis clearly indicates that the influence degree o f the four factors on UCS is in such an order:dosage,age,gradation,and degree o f compaction.The variance analysis shows that only the composite soil stabilizer dosage can significantly affect UCS.In road construction,the examination o f composite soil stabilizer dosage and base-course maintenance should be given much more attention to obtain satisfactory base-course strength,compared w ith gradation floating and the change of degree o f compaction.
基金Project(51179023) supported by the National Natural Science Foundation of China
文摘Pressure plate instrument is employed during drying, and unconfined compressive strength test is performed on the unsaturated specimen. Curves of shear force versus shear displacement, and curves of saturation degree versus time are investigated. The results show that the specimens with similar curves of saturation degree versus time have nearly identical mechanical behavior. In particular, the uniform specimens should be chosen within the lower equilibrium saturation degree because steady test results are presented. Further, the conclusion is verified by the repeated test. Thus, the method for distinguishing the uniform unsaturated specimen is obtained. In the light of the method, an improved test process is proposed. The uniform specimens should be chosen by this method under the specific matric suction, and then shear tests are carried out on the chosen unsaturated specimen. Namely, initial value of unsaturated soil is not zero matric suction but a specific suction.
文摘In order to simulate and study the erosion effect process such as the changes of corrosive depth and unconfined compression strength of cemented soil sample in earlier period from 0 day to 60 days, a series of tests including unconfined compressive tests, measuring the blocks' sizes, and taking photos, are conducted on the cemented soil blocks which were cured in different concentrations of H2SO4 solutions. The results of tests show that the corrosive depth is increasing and the unconfined compression strength is decreasing with the increase of H2SO4 solution concentration at the same erosion time, and the corrosive degree is increasing with the corrosive time. In the earlier state, the corrosive effect is serious, but the effect becomes slow in the later state in the same concentrated H2SO4 solution. After take statistics the date, a coefficient a is put forward to predict the reduction of the compressive strength of cemented soil in various concentration of H2SO4 solution, which could be used in practical design.
文摘It is well known that the finer particle of cementing material has more pozzolanic reaction than the coarser. This paper investigates the shear properties of geocomposite soil with various particle sizes of bottom ash. The geocomposite soil (GCS) in this study consists of dredged soil, bottom ash and cement for recycling dredged soil and bottom ash. Three different particle sizes of bottom ash passing No. 4 sieve, No. 40 sieve, and No. 140 sieve were added into soil mixtures, namely as GCS 4, GCS 40, and GCS 140, respectively. These bottom ashes have the same chemical component except for different particle sizes. Several mixtures were prepared with various contents of bottom ash ranging from 0 to 100% at 50% intervals by the weight of dry dredged soil. In this study, several series of unconfined compression test were carried out on the mixtures with various curing times. It is found that the unconfined compressive strength is a function of curing time and bottom ash content. For the curing time less than 28 days, the GCS 4 has higher unconfined compressive strength than the GCS 40 and GCS 140 due to the interlocking effect and friction between the particles with angular shape of coarse bottom ash. For the curing time larger than 28 days, the GCS 140 has higher strength due to the pozzolanic reaction. However, the ratios of secant modulus to unconfined compressive strength of three mixtures are almost the same, and in range of (46-100), regardless of mixing condition and curing time.