Based on Fabry model and finite-different time-domain(FDTD) method, the plasmonic structure composed of a metal-insulator-metal(MIM) bus waveguide and a side-coupled resonator was investigated. It is found that the tr...Based on Fabry model and finite-different time-domain(FDTD) method, the plasmonic structure composed of a metal-insulator-metal(MIM) bus waveguide and a side-coupled resonator was investigated. It is found that the transmission features can be regulated by the cavity width and coupling distance. Electromagnetically induced transparency(EIT)-like transmission can be excited by adding an identical resonator on the pre-existing structure. Combining the foregoing theoretical analysis with coupled mode theory(CMT), the formation process of the EIT-like transmission was detailedly analyzed. EIT-like transmission can also be excited in plasmonic structure with two detuned resonators. By altering the structure parameters, the transparency window can be purposefully modulated. With the merits of compact structure and simplicity in fabrication, the proposed structures may have a broad prospect of applications in highly integrated optical circuits.展开更多
The recursion relation of preventive maintenance (PM) cycle is built up concerning the concept of effective age and age setback factor proposed in this paper, which illustrates the dynamic relationship between failure...The recursion relation of preventive maintenance (PM) cycle is built up concerning the concept of effective age and age setback factor proposed in this paper, which illustrates the dynamic relationship between failure rate and preventive maintenance activity. And the nonlinear optimal PM policy model satisfying the reliability constraints in finite time horizon following Weibull distribution is proposed. The model built in this paper avoids the shortcoming of steady analytical PM model in infinite time horizon and can be used to aid scheduling the maintenance plan and providing decision supporting for job shop scheduling.展开更多
The problem of guaranteed cost control based on finite-time stability for stochastic system is first investigated in this paper.The motivation of solving this problem arises from an observation that finite/infinite-ho...The problem of guaranteed cost control based on finite-time stability for stochastic system is first investigated in this paper.The motivation of solving this problem arises from an observation that finite/infinite-horizon guaranteed cost control does not consider the transient performance of the closed-loop system,but guaranteed cost control based on finite-time stability involves this practical requirement.In order to explain this problem explicitly,a concept of the stochastic finite-time guaranteed cost control is introduced,and then some new sufficient conditions for the existence of state and output feedback finite-time guaranteed cost controllers are derived,which guarantee finite-time stochastic stability of closed-loop systems and an upper bound of a quadratic cost function.Furthermore,this problem is reduced to a convex optimization problem with matrix inequality constraints and a new solving algorithm is given.Finally,an example is given to illustrate the effectiveness of the proposed method.展开更多
基金Project(61275174)supported by the National Natural Science Foundations of ChinaProject(20100162110068)supported by the Doctoral Program of Higher Education of China
文摘Based on Fabry model and finite-different time-domain(FDTD) method, the plasmonic structure composed of a metal-insulator-metal(MIM) bus waveguide and a side-coupled resonator was investigated. It is found that the transmission features can be regulated by the cavity width and coupling distance. Electromagnetically induced transparency(EIT)-like transmission can be excited by adding an identical resonator on the pre-existing structure. Combining the foregoing theoretical analysis with coupled mode theory(CMT), the formation process of the EIT-like transmission was detailedly analyzed. EIT-like transmission can also be excited in plasmonic structure with two detuned resonators. By altering the structure parameters, the transparency window can be purposefully modulated. With the merits of compact structure and simplicity in fabrication, the proposed structures may have a broad prospect of applications in highly integrated optical circuits.
基金Natural Science Foundation of China (No. 59889505)
文摘The recursion relation of preventive maintenance (PM) cycle is built up concerning the concept of effective age and age setback factor proposed in this paper, which illustrates the dynamic relationship between failure rate and preventive maintenance activity. And the nonlinear optimal PM policy model satisfying the reliability constraints in finite time horizon following Weibull distribution is proposed. The model built in this paper avoids the shortcoming of steady analytical PM model in infinite time horizon and can be used to aid scheduling the maintenance plan and providing decision supporting for job shop scheduling.
基金supported by the National Natural Science Foundation of China under Grant Nos.61403221,61473202 and 61174078Natural Science Foundation of Shandong Province under Grant No.ZR2013FM022+2 种基金the Research Fund for the Taishan Scholar Project of Shandong Province of Chinathe SDUST Research Fund under Grant No.2011KYTD105the State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources under Grant No.LAPS13018
文摘The problem of guaranteed cost control based on finite-time stability for stochastic system is first investigated in this paper.The motivation of solving this problem arises from an observation that finite/infinite-horizon guaranteed cost control does not consider the transient performance of the closed-loop system,but guaranteed cost control based on finite-time stability involves this practical requirement.In order to explain this problem explicitly,a concept of the stochastic finite-time guaranteed cost control is introduced,and then some new sufficient conditions for the existence of state and output feedback finite-time guaranteed cost controllers are derived,which guarantee finite-time stochastic stability of closed-loop systems and an upper bound of a quadratic cost function.Furthermore,this problem is reduced to a convex optimization problem with matrix inequality constraints and a new solving algorithm is given.Finally,an example is given to illustrate the effectiveness of the proposed method.