Taking a three-cable flexible photovoltaic(PV)support structure as the research subject,a finite element model was established.Utilizing a full-order flutter analysis method,the flutter critical wind speed and flutter...Taking a three-cable flexible photovoltaic(PV)support structure as the research subject,a finite element model was established.Utilizing a full-order flutter analysis method,the flutter critical wind speed and flutter frequency of the flexible PV support structure at a tilt angle of 0°were calculated.The results showed good agreement with wind tunnel test data.Further analysis examined the pretension effects in the load-bearing and stabilizing cables on the natural frequency and flutter critical wind speed of the flexible PV support structure.The research findings indicate increasing the pretension in the load-bearing cables significantly raises the natural frequencies of the first four modes.Specifically,as the pretension in the load-bearing cables increases from 22 to 102 kN,the flutter critical wind speed rises from 17.1 to 21.6 m/s.By contrast,the pretension in the stabilizing cable has a smaller effect on the natural frequency and flutter critical wind speed of the flexible PV support structure.When the pretension in the stabilizing cable increased from 22 to 102 kN,the flutter critical wind speed increased from 17.1 to 17.7 m/s.For wind-resistant design of flexible PV support structures,it is recommended to prioritize increasing the pretension in the load-bearing cables to enhance the structural flutter performance.展开更多
The images of granular ore media were captured by X-ray CT scanner. Combined with digital image processing and finite element techniques, the three-dimensional geometrical model, which represents the realistic pore st...The images of granular ore media were captured by X-ray CT scanner. Combined with digital image processing and finite element techniques, the three-dimensional geometrical model, which represents the realistic pore structure of the media, was constructed. With this model, three dimensional pore scale fluid flow among particles was simulated. Then the distributions of fluid flow velocity and pressure were analyzed and the hydraulic conductivity was calculated. The simulation results indicate the fluid flow behaviors are mainly dominated by the volume and topological structure of pore space. There exist obvious preferential flow and leaching blind zones simultaneously in the medium. The highest velocities generally occur in those narrow pores with high pressure drops. The hydraulic conductivity obtained by simulation is the same order of magnitude as the laboratory test result, which denotes the validity of the model. The pore-scale and macro-scale are combined and the established geometrical model can be used for the simulations of other phenomena during heap leaching process.展开更多
Based on the finite element (FE) program ANSYS, a three-dimensional model for the Runyang Suspension Bridge (RSB) is established. The structural natural frequency, vibration mode, stress and displacement response ...Based on the finite element (FE) program ANSYS, a three-dimensional model for the Runyang Suspension Bridge (RSB) is established. The structural natural frequency, vibration mode, stress and displacement response under various load cases are given. A new method of FE model updating is presented based on the physical meaning of sensitivity and the penalty function concept. In this method, the structural model is updated by modifying the parameters of design, and validated by structural natural vibration characteristics, stress response as well as displacement response. The design parameters used for updating are bounded according to measured static response and engineering judgment. The FE model of RSB is updated and validated by the measurements coming from the structural health monitoring system (SHMS), and the FE baseline model reflecting the current state of RSB is achieved. Both the dynamic and static results show that the method is effective in updating the FE model of long span suspension bridges. The results obtained provide an important research basis for damage alarming and health monitoring of the RSB.展开更多
Current dynamic finite element model updating methods are not efficient or restricted to the problem of local optima. To circumvent these, a novel updating method which integrates the meta-model and the genetic algori...Current dynamic finite element model updating methods are not efficient or restricted to the problem of local optima. To circumvent these, a novel updating method which integrates the meta-model and the genetic algorithm is proposed. Experimental design technique is used to determine the best sampling points for the estimation of polynomial coefficients given the order and the number of independent variables. Finite element analyses are performed to generate the sampling data. Regression analysis is then used to estimate the response surface model to approximate the functional relationship between response features and design parameters on the entire design space. In the fitness evaluation of the genetic algorithm, the response surface model is used to substitute the finite element model to output features with given design parameters for the computation of fitness for the individual. Finally, the global optima that corresponds to the updated design parameter is acquired after several generations of evolution. In the application example, finite element analysis and modal testing are performed on a real chassis model. The finite element model is updated using the proposed method. After updating, root-mean-square error of modal frequencies is smaller than 2%. Furthermore, prediction ability of the updated model is validated using the testing results of the modified structure. The root-mean-square error of the prediction errors is smaller than 2%.展开更多
A finite-element model of the thermosetting epoxy asphalt mixture(EAM) microstructure is developed to simulate the indirect tension test(IDT).Image techniques are used to capture the EAM microstructure which is di...A finite-element model of the thermosetting epoxy asphalt mixture(EAM) microstructure is developed to simulate the indirect tension test(IDT).Image techniques are used to capture the EAM microstructure which is divided into two phases:aggregates and mastic.A viscoelastic constitutive relationship,which is obtained from the results of a creep test,is used to represent the mastic phase at intermittent temperatures.Model simulation results of the stiffness modulus in IDT compare favorably with experimental data.Different loading directions and velocities are employed in order to account for their influence on the modulus and the localized stress of the microstructure model.It is pointed out that the modulus is not consistent when the loading direction changes since the heterogeneous distribution of the mixture internal structure,and the loading velocity affects the localized stress as a result of the viscoelasticity of the mastic.The study results can provide a theoretical basis for the finite-element method,which can be extended to the numerical simulations of asphalt mixture micromechanical behavior.展开更多
The high temperature split Hopkinson pressure bar (SHPB) compression experiment is conducted to obtain the data relationship among strain, strain rate and flow stress from room temperature to 550 C for aeronautical ...The high temperature split Hopkinson pressure bar (SHPB) compression experiment is conducted to obtain the data relationship among strain, strain rate and flow stress from room temperature to 550 C for aeronautical aluminum alloy 7050-T7451. Combined high-speed orthogonal cutting experiments with the cutting process simulations, the data relationship of high temperature, high strain rate and large strain in high-speed cutting is modified. The Johnson-Cook empirical model considering the effects of strain hardening, strain rate hardening and thermal softening is selected to describe the data relationship in high-speed cutting, and the material constants of flow stress constitutive model for aluminum alloy 7050-T7451 are determined. Finally, the constitutive model of aluminum alloy 7050-T7451 is established through experiment and simulation verification in high-speed cutting. The model is proved to be reasonable by matching the measured values of the cutting force with the estimated results from FEM simulations.展开更多
To analyze the stress state of steel orthotropic deck pavement and provide reference for the design of the overlay, the inner stress state and strain distribution of surfacing under the load of the deformation of the ...To analyze the stress state of steel orthotropic deck pavement and provide reference for the design of the overlay, the inner stress state and strain distribution of surfacing under the load of the deformation of the whole bridge structure and tyre load are analyzed by the finite element method of submodeling. Influence of surfacing modulus on the strain state of the overlay is analyzed for the purpose of the optimal design of the overlay structure. Analysis results show that the deformation of the whole bridge structure has no evident influence on the stress state of the overlay. The key factor of the overlay design is the transverse tensile strain in the overlay above the upper edge of web plate of rib. The stress state of the overlay is influenced evidently by the modulus of rigidity transform overlay. And the stress state of the overlay can be optimized and lowered by increasing the modulus and thickness of rigidity transform overlay, The fatigue test has been done to evaluate the fatigue performance and modulus of different deck pavement materials such as epoxy asphalt, SBS modified asphalt, rosphalt asphalt which can provide reference for deck pavement structure design.展开更多
基金The National Natural Science Foundation of China(No.52338011,52208481),China Postdoctoral Science Foundation(No.2023M730581).
文摘Taking a three-cable flexible photovoltaic(PV)support structure as the research subject,a finite element model was established.Utilizing a full-order flutter analysis method,the flutter critical wind speed and flutter frequency of the flexible PV support structure at a tilt angle of 0°were calculated.The results showed good agreement with wind tunnel test data.Further analysis examined the pretension effects in the load-bearing and stabilizing cables on the natural frequency and flutter critical wind speed of the flexible PV support structure.The research findings indicate increasing the pretension in the load-bearing cables significantly raises the natural frequencies of the first four modes.Specifically,as the pretension in the load-bearing cables increases from 22 to 102 kN,the flutter critical wind speed rises from 17.1 to 21.6 m/s.By contrast,the pretension in the stabilizing cable has a smaller effect on the natural frequency and flutter critical wind speed of the flexible PV support structure.When the pretension in the stabilizing cable increased from 22 to 102 kN,the flutter critical wind speed increased from 17.1 to 17.7 m/s.For wind-resistant design of flexible PV support structures,it is recommended to prioritize increasing the pretension in the load-bearing cables to enhance the structural flutter performance.
基金Projects (50934002, 51074013, 51104100) supported by the National Natural Science Foundation of China
文摘The images of granular ore media were captured by X-ray CT scanner. Combined with digital image processing and finite element techniques, the three-dimensional geometrical model, which represents the realistic pore structure of the media, was constructed. With this model, three dimensional pore scale fluid flow among particles was simulated. Then the distributions of fluid flow velocity and pressure were analyzed and the hydraulic conductivity was calculated. The simulation results indicate the fluid flow behaviors are mainly dominated by the volume and topological structure of pore space. There exist obvious preferential flow and leaching blind zones simultaneously in the medium. The highest velocities generally occur in those narrow pores with high pressure drops. The hydraulic conductivity obtained by simulation is the same order of magnitude as the laboratory test result, which denotes the validity of the model. The pore-scale and macro-scale are combined and the established geometrical model can be used for the simulations of other phenomena during heap leaching process.
文摘Based on the finite element (FE) program ANSYS, a three-dimensional model for the Runyang Suspension Bridge (RSB) is established. The structural natural frequency, vibration mode, stress and displacement response under various load cases are given. A new method of FE model updating is presented based on the physical meaning of sensitivity and the penalty function concept. In this method, the structural model is updated by modifying the parameters of design, and validated by structural natural vibration characteristics, stress response as well as displacement response. The design parameters used for updating are bounded according to measured static response and engineering judgment. The FE model of RSB is updated and validated by the measurements coming from the structural health monitoring system (SHMS), and the FE baseline model reflecting the current state of RSB is achieved. Both the dynamic and static results show that the method is effective in updating the FE model of long span suspension bridges. The results obtained provide an important research basis for damage alarming and health monitoring of the RSB.
文摘Current dynamic finite element model updating methods are not efficient or restricted to the problem of local optima. To circumvent these, a novel updating method which integrates the meta-model and the genetic algorithm is proposed. Experimental design technique is used to determine the best sampling points for the estimation of polynomial coefficients given the order and the number of independent variables. Finite element analyses are performed to generate the sampling data. Regression analysis is then used to estimate the response surface model to approximate the functional relationship between response features and design parameters on the entire design space. In the fitness evaluation of the genetic algorithm, the response surface model is used to substitute the finite element model to output features with given design parameters for the computation of fitness for the individual. Finally, the global optima that corresponds to the updated design parameter is acquired after several generations of evolution. In the application example, finite element analysis and modal testing are performed on a real chassis model. The finite element model is updated using the proposed method. After updating, root-mean-square error of modal frequencies is smaller than 2%. Furthermore, prediction ability of the updated model is validated using the testing results of the modified structure. The root-mean-square error of the prediction errors is smaller than 2%.
基金Program for New Century Excellent Talents in University(No. NCET-08-0118)Specialized Research Fund for the Doctoral Program of Higher Education (No. 20090092110049)
文摘A finite-element model of the thermosetting epoxy asphalt mixture(EAM) microstructure is developed to simulate the indirect tension test(IDT).Image techniques are used to capture the EAM microstructure which is divided into two phases:aggregates and mastic.A viscoelastic constitutive relationship,which is obtained from the results of a creep test,is used to represent the mastic phase at intermittent temperatures.Model simulation results of the stiffness modulus in IDT compare favorably with experimental data.Different loading directions and velocities are employed in order to account for their influence on the modulus and the localized stress of the microstructure model.It is pointed out that the modulus is not consistent when the loading direction changes since the heterogeneous distribution of the mixture internal structure,and the loading velocity affects the localized stress as a result of the viscoelasticity of the mastic.The study results can provide a theoretical basis for the finite-element method,which can be extended to the numerical simulations of asphalt mixture micromechanical behavior.
文摘The high temperature split Hopkinson pressure bar (SHPB) compression experiment is conducted to obtain the data relationship among strain, strain rate and flow stress from room temperature to 550 C for aeronautical aluminum alloy 7050-T7451. Combined high-speed orthogonal cutting experiments with the cutting process simulations, the data relationship of high temperature, high strain rate and large strain in high-speed cutting is modified. The Johnson-Cook empirical model considering the effects of strain hardening, strain rate hardening and thermal softening is selected to describe the data relationship in high-speed cutting, and the material constants of flow stress constitutive model for aluminum alloy 7050-T7451 are determined. Finally, the constitutive model of aluminum alloy 7050-T7451 is established through experiment and simulation verification in high-speed cutting. The model is proved to be reasonable by matching the measured values of the cutting force with the estimated results from FEM simulations.
文摘To analyze the stress state of steel orthotropic deck pavement and provide reference for the design of the overlay, the inner stress state and strain distribution of surfacing under the load of the deformation of the whole bridge structure and tyre load are analyzed by the finite element method of submodeling. Influence of surfacing modulus on the strain state of the overlay is analyzed for the purpose of the optimal design of the overlay structure. Analysis results show that the deformation of the whole bridge structure has no evident influence on the stress state of the overlay. The key factor of the overlay design is the transverse tensile strain in the overlay above the upper edge of web plate of rib. The stress state of the overlay is influenced evidently by the modulus of rigidity transform overlay. And the stress state of the overlay can be optimized and lowered by increasing the modulus and thickness of rigidity transform overlay, The fatigue test has been done to evaluate the fatigue performance and modulus of different deck pavement materials such as epoxy asphalt, SBS modified asphalt, rosphalt asphalt which can provide reference for deck pavement structure design.