In this paper, a special three-step difference scheme is applied to the solution of nonlinear time-evolution equations, whose coefficients are determined according to accuracy constraints, necessary conditions of squa...In this paper, a special three-step difference scheme is applied to the solution of nonlinear time-evolution equations, whose coefficients are determined according to accuracy constraints, necessary conditions of square conservation, and historical observation information under the linear supposition. As in the linear case, the schemes also have obvious superiority in overall performance in the nonlinear case compared with traditional finite difference schemes, e.g., the leapfrog(LF) scheme and the complete square conservation difference(CSCD) scheme that do not use historical observations in determining their coefficients, and the retrospective time integration(RTI) scheme that does not consider compatibility and square conservation. Ideal numerical experiments using the one-dimensional nonlinear advection equation with an exact solution show that this three-step scheme minimizes its root mean square error(RMSE) during the first 2500 integration steps when no shock waves occur in the exact solution, while the RTI scheme outperforms the LF scheme and CSCD scheme only in the first 1000 steps and then becomes the worst in terms of RMSE up to the 2500th step. It is concluded that reasonable consideration of accuracy, square conservation, and historical observations is also critical for good performance of a finite difference scheme for solving nonlinear equations.展开更多
A numerical algorithm using a bilinear or linear finite element and semi-implicit three-step method is presented for the analysis of incompressible viscous fluid problems. The streamline upwind/Petrov-Galerkin (SUPG) ...A numerical algorithm using a bilinear or linear finite element and semi-implicit three-step method is presented for the analysis of incompressible viscous fluid problems. The streamline upwind/Petrov-Galerkin (SUPG) stabilization scheme is used for the formulation of the Navier-Stokes equations. For the spatial discretization, the convection term is treated explicitly, while the viscous term is treated implicitly, and for the temporal discretization, a three-step method is employed. The present method is applied to simulate the lid driven cavity problems with different geometries at low and high Reynolds numbers. The results compared with other numerical experiments are found to be feasible and satisfactory.展开更多
基金the Ministry of Science and Technology of China for the National Basic Research Program of China(973 Program,Grant No.2011CB309704)
文摘In this paper, a special three-step difference scheme is applied to the solution of nonlinear time-evolution equations, whose coefficients are determined according to accuracy constraints, necessary conditions of square conservation, and historical observation information under the linear supposition. As in the linear case, the schemes also have obvious superiority in overall performance in the nonlinear case compared with traditional finite difference schemes, e.g., the leapfrog(LF) scheme and the complete square conservation difference(CSCD) scheme that do not use historical observations in determining their coefficients, and the retrospective time integration(RTI) scheme that does not consider compatibility and square conservation. Ideal numerical experiments using the one-dimensional nonlinear advection equation with an exact solution show that this three-step scheme minimizes its root mean square error(RMSE) during the first 2500 integration steps when no shock waves occur in the exact solution, while the RTI scheme outperforms the LF scheme and CSCD scheme only in the first 1000 steps and then becomes the worst in terms of RMSE up to the 2500th step. It is concluded that reasonable consideration of accuracy, square conservation, and historical observations is also critical for good performance of a finite difference scheme for solving nonlinear equations.
基金Project supported by the National Natural Science Foundation of China (No.51078230)the Research Fund for the Doctoral Program of Higher Education of China (No.200802480056)the Key Project of Fund of Science and Technology Development of Shanghai (No.10JC1407900),China
文摘A numerical algorithm using a bilinear or linear finite element and semi-implicit three-step method is presented for the analysis of incompressible viscous fluid problems. The streamline upwind/Petrov-Galerkin (SUPG) stabilization scheme is used for the formulation of the Navier-Stokes equations. For the spatial discretization, the convection term is treated explicitly, while the viscous term is treated implicitly, and for the temporal discretization, a three-step method is employed. The present method is applied to simulate the lid driven cavity problems with different geometries at low and high Reynolds numbers. The results compared with other numerical experiments are found to be feasible and satisfactory.