This paper describes the study analysis performed to evaluate the available and potential solutions to control the highly increasing short circuit (SC) levels in Kuwait power system. The real Kuwait High Voltage (H...This paper describes the study analysis performed to evaluate the available and potential solutions to control the highly increasing short circuit (SC) levels in Kuwait power system. The real Kuwait High Voltage (HV) network was simulated to examine different measures at both 275 kV and 132 kV stations. The simulation results show that the short circuit currents exceed the permissible levels (40 kA in the 132 kV network and 63 kA in the 275 kV network) in some specific points. The examined measures include the a study on changing the neutral point policy, changing some lines from alternating current (AC) to direct current (DC), dividing specific bus bars in some generating stations and applying current limiters. The paper also presents a new plan for the transmission network in order to manage the expected increase in short circuit levels in the future.展开更多
Realizing low contact resistance between graphene and metal electrodes remains a well-known challenge for building high-performance graphene devices. In this work, we attempt to reduce the contact resistance in graphe...Realizing low contact resistance between graphene and metal electrodes remains a well-known challenge for building high-performance graphene devices. In this work, we attempt to reduce the contact resistance in graphene transistors and further explore the resistance limit between graphene and metal contacts. The Pd/graphene contact resistance at room temperature is reduced below the 100 Ω·μm level both on mechanically exfoliated and chemical-vapor-deposition graphene by adopting high-purity palladium and high-quality graphene and controlling the fabrication process to not contaminate the interface. After excluding the parasitic series resistances from the measurement system and electrodes, the retrieved contact resistance is shown to be systematically and statistically less than 100 Ω·μm, with a minimum value of 69 Ω·μm, which is very close to the theoretical limit. Furthermore, the contact resistance shows no clear dependence on temperature in the range of 77-300 K; this is attributed to the saturation of carrier injection efficiency between graphene and Pd owing to the high quality of the graphene samples used, which have a sufficiently long carrier mean-free-path.展开更多
文摘This paper describes the study analysis performed to evaluate the available and potential solutions to control the highly increasing short circuit (SC) levels in Kuwait power system. The real Kuwait High Voltage (HV) network was simulated to examine different measures at both 275 kV and 132 kV stations. The simulation results show that the short circuit currents exceed the permissible levels (40 kA in the 132 kV network and 63 kA in the 275 kV network) in some specific points. The examined measures include the a study on changing the neutral point policy, changing some lines from alternating current (AC) to direct current (DC), dividing specific bus bars in some generating stations and applying current limiters. The paper also presents a new plan for the transmission network in order to manage the expected increase in short circuit levels in the future.
基金This work was supported by the Ministry of Sdence and Technology of China (Grant Nos. 2011CB933001 and 2011CB933002), National Natural Science Foundation of China (Grant Nos. 61322105, 61271051, 61321001, and 61390504), and Beijing Municipal Science and Technology Commission (Grant Nos. Z131100003213021 and D141100000614001).
文摘Realizing low contact resistance between graphene and metal electrodes remains a well-known challenge for building high-performance graphene devices. In this work, we attempt to reduce the contact resistance in graphene transistors and further explore the resistance limit between graphene and metal contacts. The Pd/graphene contact resistance at room temperature is reduced below the 100 Ω·μm level both on mechanically exfoliated and chemical-vapor-deposition graphene by adopting high-purity palladium and high-quality graphene and controlling the fabrication process to not contaminate the interface. After excluding the parasitic series resistances from the measurement system and electrodes, the retrieved contact resistance is shown to be systematically and statistically less than 100 Ω·μm, with a minimum value of 69 Ω·μm, which is very close to the theoretical limit. Furthermore, the contact resistance shows no clear dependence on temperature in the range of 77-300 K; this is attributed to the saturation of carrier injection efficiency between graphene and Pd owing to the high quality of the graphene samples used, which have a sufficiently long carrier mean-free-path.