Aim A novel method has been developed for evaluation of the levels of total residual protein in antibiotics produced by fermentation using gel filtration chromatography (GFC) combined with Bradford assay based on dete...Aim A novel method has been developed for evaluation of the levels of total residual protein in antibiotics produced by fermentation using gel filtration chromatography (GFC) combined with Bradford assay based on determination of residual protein in lincomycin hydrochloride. Methods The chromatographic conditions were SuperdexTM peptide column, 0.01 mol*L-1 phosphate buffer solution as mobile phase, and flow rate of 1 mL·min-1. Five hundred microliters of lincomycin hydrochloride solution (3 g of lincomycin hydrochloride dissolved in 10 mL of mobile phase) was injected into the chromatograph and the eluted solution was collected between 6 min and 14.5 min (protein eluted from column within this period), and the residual content of total protein in the eluted solution was assayed using Bradford assay method. Results The average recovery was more than 90% for bovine serum albumin, the calibration equation for the range of 0-12 μg·mL-1 of protein was y=-0.002 4x2+0.064 2x+0.002 9, r2=0.999 9, RSD=0.1%-0.9%, and the LOD and LOQ were 3 and 10 ng·mL-1 of protein, respectively. Conclusion The novel method for determining the residual protein in ferment antibio-tics is simple, rapid, and precise.展开更多
Dopamine(DA) plays an important role in health and peripheral nervous systems. Colorimetric detection of DA has the advantage of color change and simplicity in operation and instrumentation. Herein, we report a highly...Dopamine(DA) plays an important role in health and peripheral nervous systems. Colorimetric detection of DA has the advantage of color change and simplicity in operation and instrumentation. Herein, we report a highly sensitive and selective colorimetric detection of DA by using two specific ligands modified Ag nanoparticles, where the DA molecules can make dual recognition with high specificity. The colloidal suspension of modified Ag nanoparticles was agglomerated after interacting with DA, while the color of Ag nanoparticles suspension changed from yellow to brown, arising from the interparticle plasmon coupling during the aggregation of Ag nanoparticles. The modified Ag nanoparticles suspension and agglomeration were confirmed by transmission electron microscope images. The optical properties behind the color change were thoroughly investigated by using UV-Vis and Raman techniques. The changes in p H, zeta potential, particle size and surface charge density by adding DA were also determined by using dynamic light scattering measurements. The detection limits of modified Ag probes for DA was calculated to be 6.13′10^(-6) mol L^(-1)(S/N=2.04) and the correlation co-efficient was determined to be 0.9878. Because of the simplicity in operation and instrumentation of the colorimetric method, this work may afford a feasible, fast approach for detecting and monitoring the DA levels in physiological and pathological systems.展开更多
In this paper,the discontinuous Galerkin(DG)method combined with localized artificial diffusivity is investigated in the context of numerical simulation of broadband compressible turbulent flows with shocks for under-...In this paper,the discontinuous Galerkin(DG)method combined with localized artificial diffusivity is investigated in the context of numerical simulation of broadband compressible turbulent flows with shocks for under-resolved cases.Firstly,the spectral property of the DG method is analyzed using the approximate dispersion relation(ADR)method and compared with typical finite difference methods,which reveals quantitatively that significantly less grid points can be used with DG for comparable numerical error.Then several typical test cases relevant to problems of compressible turbulence are simulated,including one-dimensional shock/entropy wave interaction,two-dimensional decaying isotropic turbulence,and two-dimensional temporal mixing layers.Numerical results indicate that higher numerical accuracy can be achieved on the same number of degrees of freedom with DG than high order finite difference schemes.Furthermore,shocks are also well captured using the localized artificial diffusivity method.The results in this work can provide useful guidance for further applications of DG to direct and large eddy simulation of compressible turbulent flows.展开更多
文摘Aim A novel method has been developed for evaluation of the levels of total residual protein in antibiotics produced by fermentation using gel filtration chromatography (GFC) combined with Bradford assay based on determination of residual protein in lincomycin hydrochloride. Methods The chromatographic conditions were SuperdexTM peptide column, 0.01 mol*L-1 phosphate buffer solution as mobile phase, and flow rate of 1 mL·min-1. Five hundred microliters of lincomycin hydrochloride solution (3 g of lincomycin hydrochloride dissolved in 10 mL of mobile phase) was injected into the chromatograph and the eluted solution was collected between 6 min and 14.5 min (protein eluted from column within this period), and the residual content of total protein in the eluted solution was assayed using Bradford assay method. Results The average recovery was more than 90% for bovine serum albumin, the calibration equation for the range of 0-12 μg·mL-1 of protein was y=-0.002 4x2+0.064 2x+0.002 9, r2=0.999 9, RSD=0.1%-0.9%, and the LOD and LOQ were 3 and 10 ng·mL-1 of protein, respectively. Conclusion The novel method for determining the residual protein in ferment antibio-tics is simple, rapid, and precise.
基金supported by the National Basic Research Program of China(2011CB933200)
文摘Dopamine(DA) plays an important role in health and peripheral nervous systems. Colorimetric detection of DA has the advantage of color change and simplicity in operation and instrumentation. Herein, we report a highly sensitive and selective colorimetric detection of DA by using two specific ligands modified Ag nanoparticles, where the DA molecules can make dual recognition with high specificity. The colloidal suspension of modified Ag nanoparticles was agglomerated after interacting with DA, while the color of Ag nanoparticles suspension changed from yellow to brown, arising from the interparticle plasmon coupling during the aggregation of Ag nanoparticles. The modified Ag nanoparticles suspension and agglomeration were confirmed by transmission electron microscope images. The optical properties behind the color change were thoroughly investigated by using UV-Vis and Raman techniques. The changes in p H, zeta potential, particle size and surface charge density by adding DA were also determined by using dynamic light scattering measurements. The detection limits of modified Ag probes for DA was calculated to be 6.13′10^(-6) mol L^(-1)(S/N=2.04) and the correlation co-efficient was determined to be 0.9878. Because of the simplicity in operation and instrumentation of the colorimetric method, this work may afford a feasible, fast approach for detecting and monitoring the DA levels in physiological and pathological systems.
基金supported by the National Basic Research Program of China(Grant No.2009CB724104)
文摘In this paper,the discontinuous Galerkin(DG)method combined with localized artificial diffusivity is investigated in the context of numerical simulation of broadband compressible turbulent flows with shocks for under-resolved cases.Firstly,the spectral property of the DG method is analyzed using the approximate dispersion relation(ADR)method and compared with typical finite difference methods,which reveals quantitatively that significantly less grid points can be used with DG for comparable numerical error.Then several typical test cases relevant to problems of compressible turbulence are simulated,including one-dimensional shock/entropy wave interaction,two-dimensional decaying isotropic turbulence,and two-dimensional temporal mixing layers.Numerical results indicate that higher numerical accuracy can be achieved on the same number of degrees of freedom with DG than high order finite difference schemes.Furthermore,shocks are also well captured using the localized artificial diffusivity method.The results in this work can provide useful guidance for further applications of DG to direct and large eddy simulation of compressible turbulent flows.