期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
超静定杆系极限载荷的计算
1
作者 郑国军 彭巍 《九江职业技术学院学报》 2004年第2期29-30,共2页
用普朗特简化曲线为理论依据 ,按极限载荷法对简单超静定杆系结构进行强度计算比较容易 ,同样也可进行强度问题的三种计算。
关键词 限载荷法 简单起静定杆系结构 强度计算 塑性材料 普朗特简化曲线
下载PDF
EXPERIMENTAL RESEARCH AND NONLINEAR FINITE ELEMENT ANALYSIS ON NEW TYPE JOINT BETWEEN COLUMN AND STEEL BEAM OF CONCRETE-FILLED RECTANGULAR STEEL TUBULAR 被引量:5
2
作者 于旭 宰金珉 刘伟庆 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2009年第1期75-82,共8页
Experimental results of new type joints between the column and the. steel beam of concrete-filled rectangular steel tubular (CFRT) under reversed cyclic loads are presented. The earthquake resistant capacity of the ... Experimental results of new type joints between the column and the. steel beam of concrete-filled rectangular steel tubular (CFRT) under reversed cyclic loads are presented. The earthquake resistant capacity of the joint is influenced by infilled concrete, stiffener length and relative dimensions of column and beam. It is found that the hysteresis curves obtained in the experiment are full and the joints have a good energy dissipation capacity. The nonlinear finite element models are also used to analyze the hysteresis behavior of the joints under reversed cyclic loads using ANSYS 8.0. The influences of the stiffener length and the infilled concrete are analyzed. Analytical results show that the stiffener length and the infilled concrete are critical for the joints. Furthermore, the skeleton curves of the finite element models are in good agreement with those of experiments. 展开更多
关键词 JOINTS cyclic loads finite element method concrete-filled rectangular steel tubular (CFRT)
下载PDF
Reflective cracking viscoelastic response of asphalt concrete under dynamic vehicle loading
3
作者 赵岩荆 倪富健 《Journal of Southeast University(English Edition)》 EI CAS 2009年第3期391-394,共4页
In order to investigate the mechanical response of reflective cracking in asphalt concrete pavement under dynamic vehicle loading, a finite element model is established in ABAQUS. The viscoelastic behavior is describe... In order to investigate the mechanical response of reflective cracking in asphalt concrete pavement under dynamic vehicle loading, a finite element model is established in ABAQUS. The viscoelastic behavior is described by a prony series which is calculated through nonlinear fitting to the creep test data obtained in the laboratory. Based on the viscoelastic theory, the time-temperature equivalence principle, fracture mechanics and the dynamic finite element method, both the Jintegral and the mix-mode stress intensity factor are utilized as fracture evaluation parameters, and a half-sine dynamic loading is used to simulate the vehicle loading. Finally, the mechanical response of the pavement reflective cracking is analyzed under different vehicle speeds, different environmental conditions and various damping factors. The results indicate that increasing either the vehicle speed or the structure damping factor decreases the maximum values of fracture parameters, while the structure temperature has little effect on the fracture parameters. Due to the fact that the vehicle speed can be enhanced by improving the road traffic conditions, and the pavement damping factor can become greater by modifying the components of materials, the development of reflective cracking can be delayed and the asphalt pavement service life can be effectively extended through both of these ways. 展开更多
关键词 asphalt pavement VISCOELASTIC finite element method reflective cracking dynamic vehicle loading
下载PDF
Use of the finite elements method for modelling the dynamic load impact on hydraulic leg equipped with gas accumulator 被引量:4
4
作者 GONDEK Horst MAZUREK Krzysztof SZWEDA Stanislaw 《Journal of Coal Science & Engineering(China)》 2008年第2期171-175,共5页
Procedures of preparation of numerical analysis,consisting in a simulation of cooperation of three different media: steel,liquid and gas undergoes dynamic load were discussed.Modelling of the initial static load of th... Procedures of preparation of numerical analysis,consisting in a simulation of cooperation of three different media: steel,liquid and gas undergoes dynamic load were discussed.Modelling of the initial static load of the mechanical system was presented.By using the MSC.Software products the following exemplary computer simulations were made: dynamic load impact on the hydraulic leg as well as effectiveness of the hydraulic leg protection against overload with help of gas accumulator. 展开更多
关键词 finite elements dynamic load hydraulic leg equipped gas accumulator
下载PDF
Calculations of plastic collapse load of pressure vessel using FEA 被引量:6
5
作者 Peng-fei LIU Jin-yang ZHENG +2 位作者 Li MA Cun-jian MIAO Lin-lin WU 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2008年第7期900-906,共7页
This paper proposes a theoretical method using finite element analysis(FEA) to calculate the plastic collapse loads of pressure vessels under internal pressure,and compares the analytical methods according to three cr... This paper proposes a theoretical method using finite element analysis(FEA) to calculate the plastic collapse loads of pressure vessels under internal pressure,and compares the analytical methods according to three criteria stated in the ASME Boiler Pressure Vessel Code. First,a finite element technique using the arc-length algorithm and the restart analysis is developed to conduct the plastic collapse analysis of vessels,which includes the material and geometry non-linear properties of vessels. Second,as the mechanical properties of vessels are assumed to be elastic-perfectly plastic,the limit load analysis is performed by em-ploying the Newton-Raphson algorithm,while the limit pressure of vessels is obtained by the twice-elastic-slope method and the tangent intersection method respectively to avoid excessive deformation. Finally,the elastic stress analysis under working pressure is conducted and the stress strength of vessels is checked by sorting the stress results. The results are compared with those obtained by experiments and other existing models. This work provides a reference for the selection of the failure criteria and the calculation of the plastic collapse load. 展开更多
关键词 Plastic collapse load Pressure vessel Finite element analysis (FEA) Design by analysis (DBA)
下载PDF
Analysis of structural response under blast loads using the coupled SPH-FEM approach 被引量:12
6
作者 Jun-xiang XU Xi-la LIU 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2008年第9期1184-1192,共9页
A numerical model using the coupled smoothed panicle hydrodynamics-finite element method (SPH-FEM) approach is presented for analysis of structures under blast loads. The analyses on two numerical cases, one for fre... A numerical model using the coupled smoothed panicle hydrodynamics-finite element method (SPH-FEM) approach is presented for analysis of structures under blast loads. The analyses on two numerical cases, one for free field explosive and the other for structural response under blast loads, are performed to model the whole processes from the propagation of the pressure wave to the response of structures. Based on the simulation, it is concluded that this model can be used for reasonably accurate explosive analysis of structures. The resulting information would be valuable for protecting structures under blast loads. 展开更多
关键词 Smoothed particle hydrodynamics (SPH) Finite element method (FEM) Reinforced concrete structure Explosion
下载PDF
Limit equilibrium stability analysis of slopes under external loads 被引量:4
7
作者 DENG Dong-ping ZHAO Lian-heng LI Liang 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第9期2382-2396,共15页
Two calculation modes for the effect of external load on slope stability, i.e., mode I in which the external load is thought to act on slope surface, and mode II in which the external load is thought to act on slip su... Two calculation modes for the effect of external load on slope stability, i.e., mode I in which the external load is thought to act on slope surface, and mode II in which the external load is thought to act on slip surface along the force action line, were considered. Meanwhile, four basic distribution patterns of external load were used, of which complex external loads could be composed. In analysis process, several limit equilibrium methods, such as Swedish method, simplified Bishop method, simplified Janbu method, Spencer method, Morgenstern-Price(M-P) method, Sarma method, and unbalanced thrust method, were also adopted to contrast their differences in slope stability under the external load. According to parametric analysis, some conclusions can be obtained as follows:(1) The external load, with the large magnitude, small inclination angle, and acting position close to the slope toe,has more positive effect on slope stability;(2) The results calculated using modes I and II of external load are similar, indicating that the calculation mode of external load has little influence on slope stability;(3) If different patterns of external loads are equivalent to each other, their slope stability under these external loads are the same, and if not, the external load leads to the better slope stability,as action position of the resultant force for external load is closer to the lower sliding point of slip surface. 展开更多
关键词 slope stability calculation mode of external load distribution pattern of external load limit equilibrium slip surface factor of safety (FOS)
下载PDF
Mechanical response of continuously reinforced concrete pavement on foam concrete interlayer for two-way curved arch bridge
8
作者 Chen Xiaobing Xu Libin +1 位作者 Liu Han He Chusheng 《Journal of Southeast University(English Edition)》 EI CAS 2018年第3期349-355,共7页
In order to research the mechanical response of continuously reinforced concrete pavement on foam concrete interlayer for a two-way curved arch bridge, the elliptical vehicle load is translated into the rectangular lo... In order to research the mechanical response of continuously reinforced concrete pavement on foam concrete interlayer for a two-way curved arch bridge, the elliptical vehicle load is translated into the rectangular load based on the equivalence method. Then, a three-dimensional finite element model of the whole bridge is established. The reliability of the model is verified. Additionally, the mechanical response of continuously reinforced concrete pavement under vehicle loading is analyzed. Finally, the most unfavorable loading conditions of tensile stress, shear stress and vertical displacement are determined. The results show that the most unfavorable loading condition of tensile stress, which is at the bottom of continuously reinforced concrete pavement on the two-way curved arch bridge, is changed compared with that on homogeneous foundation. The most unfavorable loading condition of shear stress at the top is also changed. However, the most unfavorable loading condition of vertical displacement remains unchanged. The tensile stress at the bottom of about 1/4 span of the longitudinal joint, the shear stress at the top of intersection of transverse and longitudinal joint, together with the vertical displacement at the central part of longitudinal joint, are taken as design indices during the structural design of continuously reinforced concrete pavement on the two-way curved arch bridge. The results are helpful for the design of continuously reinforced concrete pavement on unequal- thickness base for the two-way curved arch bridge. 展开更多
关键词 two-way curved arch bridge bridge deckpavement unequal-thickness base continuously reinforcedconcrete pavement unfavorable loading condition finiteelement method (FEM)
下载PDF
Identification of hydrodynamic coefficients from experiment of vortex-induced vibration of slender riser model 被引量:5
9
作者 TANG GuoQiang LU Lin +3 位作者 TENG Bin PARK HanI1 SONG JiNing ZHANG JianQiao 《Science China(Technological Sciences)》 SCIE EI CAS 2011年第7期1894-1905,共12页
One of the challenges in predicting the dynamic response of deepwater risers under vortex-induced vibration (VIV) is that it runs short of believable fluid loading model. Moreover, the hydrodynamic loading is also d... One of the challenges in predicting the dynamic response of deepwater risers under vortex-induced vibration (VIV) is that it runs short of believable fluid loading model. Moreover, the hydrodynamic loading is also difficult to be measured directly in the VIV experiments without disturbing the fluid field. In the present work, by means of a finite element analysis method based on the experimental data of the response displacements, the total instantaneous distributions of hydrodynamic forces together with the hydrodynamic coefficients on the riser model with large aspect ratio (length/ddiameter) of 1750 are achieved. The steady current speeds considered in the experiments of this work are ranging from 0.15 rn/s to 0.60 m/s, giving the Reynolds Number between 2400 and 9600. The hydrodynamic coefficients are evaluated at the fundamental frequency and in the higher order frequency components for both in-line and cross-flow directions. It is found that the Root-Mean Squared hydrodynamic forces of the higher order response frequency are larger than those of the fundamental response frequency. Negative lift or drag coefficients are found in the numerical results which is equivalent to the effect of fluid damping. 展开更多
关键词 vortex-induced vibration deepwater riser hydrodynamic coefficients finite element method dynamic response
原文传递
Load identification in one dimensional structure based on hybrid finite element method
10
作者 XUE XiaoFeng CHEN XueFeng +1 位作者 ZHANG XingWu GENG Jia 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2017年第4期538-551,共14页
The new hybrid elements are proposed by combing modified Hermitian wavelet elements with ANASYS elements. Then hybrid elements are substituted into finite element formulations to solve the load identification. Transfe... The new hybrid elements are proposed by combing modified Hermitian wavelet elements with ANASYS elements. Then hybrid elements are substituted into finite element formulations to solve the load identification. Transfer matrix can be constructed by using the inverse Newmark algorithm and hybrid finite element method. Loads can obtain through the responses and the transfer matrix. Load identification law was studied under different excitation cases in rod and Timoshenko beam.Regularization method is adopted to solve ill-posed inverse problem of load identification. Compared with ANSYS results,hybrid elements and HCSWI elements can accurately identify the applied load. Numerical results show that the algorithm of hybrid elements is effective. The accuracy of hybrid elements and HCSWI elements can be verified by comparing the load identification result of ANASYS elements with the experiment data. Hermitian wavelet finite element methods have high accuracy advantage but it is difficult to apply the engineering practice. In practical engineering, complex structure can be analyzed by using the hybrid finite element methods which can be obtained the high accuracy in the crucial component. 展开更多
关键词 hybrid finite element method Hermitian wavelet elements load identification regularization method
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部