To alleviate the heavy load of massive alarm on operators, alarm threshold in chemical processes was optimized with principal component analysis(PCA) weight and Johnson transformation in this paper. First, few variabl...To alleviate the heavy load of massive alarm on operators, alarm threshold in chemical processes was optimized with principal component analysis(PCA) weight and Johnson transformation in this paper. First, few variables that have high PCA weight factors are chosen as key variables. Given a total alarm frequency to these variables initially, the allowed alarm number for each variable is determined according to their sampling time and weight factors. Their alarm threshold and then control limit percentage are determined successively. The control limit percentage of non-key variables is determined with 3σ method alternatively. Second, raw data are transformed into normal distribution data with Johnson function for all variables before updating their alarm thresholds via inverse transformation of obtained control limit percentage. Alarm thresholds are optimized by iterating this process until the calculated alarm frequency reaches standard level(normally one alarm per minute). Finally,variables and their alarm thresholds are visualized in parallel coordinate to depict their variation trends concisely and clearly. Case studies on a simulated industrial atmospheric-vacuum crude distillation demonstrate that the proposed alarm threshold optimization strategy can effectively reduce false alarm rate in chemical processes.展开更多
Based on non-Darcian flow law described by exponent and threshold gradient within a double-layered soil, the classic theory of one-dimensional consolidation of double-layered soil was modified to consider the change o...Based on non-Darcian flow law described by exponent and threshold gradient within a double-layered soil, the classic theory of one-dimensional consolidation of double-layered soil was modified to consider the change of vertical total stress with depth and time together. Because of the complexity of governing equations, the numerical solutions were obtained in detail by finite difference method. Then, the numerical solutions were compared with the analytical solutions in condition that non-Darcian flow law was degenerated to Dary's law, and the comparison results show that numerical solutions are reliable. Finally, consolidation behavior of double-layered soil with different parameters was analyzed, and the results show that the consolidation rate of double-layered soil decreases with increasing the value of exponent and threshold of non-Darcian flow, and the exponent and threshold gradient of the first soil layer greatly influence the consolidation rate of double-layered soil. The larger the ratio of the equivalent water head of external load to the total thickness of double-layered soil, the larger the rate of the consolidation, and the similitude relationship in classical consolidation theory of double-layered soil is not satisfied. The other consolidation behavior of double-layered soil with non-Darcian flow is the same as that with Darcy's law.展开更多
基金Supported by the National Natural Science Foundation of China(21576143)
文摘To alleviate the heavy load of massive alarm on operators, alarm threshold in chemical processes was optimized with principal component analysis(PCA) weight and Johnson transformation in this paper. First, few variables that have high PCA weight factors are chosen as key variables. Given a total alarm frequency to these variables initially, the allowed alarm number for each variable is determined according to their sampling time and weight factors. Their alarm threshold and then control limit percentage are determined successively. The control limit percentage of non-key variables is determined with 3σ method alternatively. Second, raw data are transformed into normal distribution data with Johnson function for all variables before updating their alarm thresholds via inverse transformation of obtained control limit percentage. Alarm thresholds are optimized by iterating this process until the calculated alarm frequency reaches standard level(normally one alarm per minute). Finally,variables and their alarm thresholds are visualized in parallel coordinate to depict their variation trends concisely and clearly. Case studies on a simulated industrial atmospheric-vacuum crude distillation demonstrate that the proposed alarm threshold optimization strategy can effectively reduce false alarm rate in chemical processes.
基金Projects(50878191,51109092)supported by the National Natural Science Foundation of China
文摘Based on non-Darcian flow law described by exponent and threshold gradient within a double-layered soil, the classic theory of one-dimensional consolidation of double-layered soil was modified to consider the change of vertical total stress with depth and time together. Because of the complexity of governing equations, the numerical solutions were obtained in detail by finite difference method. Then, the numerical solutions were compared with the analytical solutions in condition that non-Darcian flow law was degenerated to Dary's law, and the comparison results show that numerical solutions are reliable. Finally, consolidation behavior of double-layered soil with different parameters was analyzed, and the results show that the consolidation rate of double-layered soil decreases with increasing the value of exponent and threshold of non-Darcian flow, and the exponent and threshold gradient of the first soil layer greatly influence the consolidation rate of double-layered soil. The larger the ratio of the equivalent water head of external load to the total thickness of double-layered soil, the larger the rate of the consolidation, and the similitude relationship in classical consolidation theory of double-layered soil is not satisfied. The other consolidation behavior of double-layered soil with non-Darcian flow is the same as that with Darcy's law.