In the process of shield tunneling through soft soil layers,the presence of confined water ahead poses a significant threat to the stability of the tunnel face.Therefore,it is crucial to consider the impact of confine...In the process of shield tunneling through soft soil layers,the presence of confined water ahead poses a significant threat to the stability of the tunnel face.Therefore,it is crucial to consider the impact of confined water on the limit support pressure of the tunnel face.This study employed the finite element method(FEM)to analyze the limit support pressure of shield tunnel face instability within a pressurized water-containing layer.Subsequently,a multiple linear regression approach was applied to derive a concise solution formula for the limit support pressure,incorporating various influencing factors.The analysis yields the following conclusions:1)The influence of confined water on the instability mode of the tunnel face in soft soil layers makes the displacement response of the strata not significant when the face is unstable;2)The limit support pressure increases approximately linearly with the pressure head,shield tunnel diameter,and tunnel burial depth.And inversely proportional to the thickness of the impermeable layer,soil cohesion and internal friction angle;3)Through an engineering case study analysis,the results align well with those obtained from traditional theoretical methods,thereby validating the rationality of the equations proposed in this paper.Furthermore,the proposed equations overcome the limitation of traditional theoretical approaches considering the influence of changes in impermeable layer thickness.It can accurately depict the dynamic variation in the required limit support pressure to maintain the stability of the tunnel face during shield tunneling,thus better reflecting engineering reality.展开更多
In this paper,we consider the truncated multiplicity finite range set problem of meromorphic functions on some complex disc.By using the value distribution theory of meromorphic functions,we establish a second main th...In this paper,we consider the truncated multiplicity finite range set problem of meromorphic functions on some complex disc.By using the value distribution theory of meromorphic functions,we establish a second main theorem for meromorphic functions with finite growth index which share meromorphic functions(may not be small functions).As its application,we also extend the result of a finite range set with truncated multiplicity.展开更多
Seismic modeling is a useful tool for studying the propagation of seismic waves within complex structures. However, traditional methods of seismic simulation cannot meet the needs for studying seismic wavefields in th...Seismic modeling is a useful tool for studying the propagation of seismic waves within complex structures. However, traditional methods of seismic simulation cannot meet the needs for studying seismic wavefields in the complex geological structures found in seismic exploration of the mountainous area in Northwestern China. More powerful techniques of seismic modeling are demanded for this purpose. In this paper, two methods of finite element-finite difference method (FE-FDM) and arbitrary difference precise integration (ADPI) for seismic forward modeling have been developed and implemented to understand the behavior of seismic waves in complex geological subsurface structures and reservoirs. Two case studies show that the FE-FDM and ADPI techniques are well suited to modeling seismic wave propagation in complex geology.展开更多
The penetration resistance of Kevlar-129 fiber reinforced composite materials was investigated with AUTODYN software.The ballistic limits of the fragment that pierced 6kinds of target plates were obtained by finite el...The penetration resistance of Kevlar-129 fiber reinforced composite materials was investigated with AUTODYN software.The ballistic limits of the fragment that pierced 6kinds of target plates were obtained by finite element simulation when the 10 g fragment simulation projectile(FSP)impacting to the target plates of different thickness values of 8,10,12,14,16 and 18mm with appropriate velocity,respectively,and the influences of thickness on the ballistic limits and the specific energy absorption were analyzed.The results show that the ballistic limit of Kevlar-129 fiber reinforced composite plates presents linear growth with the increase of the target thickness in the range from 8to 18 mm.The specific energy absorption of plates presents approximately linear growth,but there is slightly slow growth in the range from 10 to 16mm of the target thickness.It also can be found that the influences of plate thickness and surface density on the varying pattern of specific energy absorption are almost the same.Therefore,both of them can be used to characterize the variation of specific energy absorption under the impact of the FSP fragment.展开更多
Based on the experimental study and inelastic theory, the ultimate flexuralcapacity of steel encased concrete composite beams are derived. The difference between steel encasedconcrete composite beams with full shear c...Based on the experimental study and inelastic theory, the ultimate flexuralcapacity of steel encased concrete composite beams are derived. The difference between steel encasedconcrete composite beams with full shear connection and beams with partial shear connection,together with the relationship between the inelastic neutral axis of steel parts and concrete parts,are considered in the formulae. The calculation results of the eight specimens with full shearconnection and the three specimens with partial shear connection are in good agreement with theexperimental data, which validates the effectiveness and efficiency of the proposed calculationmethods. Furthermore, the nonlinear finite element analysis of the ultimate flexural capacity of thesteel encased concrete composite beams is performed. Nonlinear material properties and nonlinearcontact properties are considered in the finite element analysis. The finite element analyticalresults also correlate well with the experimental data.展开更多
Based on the concept of debt duration,this paper proposes the elasticity of cash flow.Then,the debt maturity structure in project financing is discussed.The results show that in the project financing structure,the deb...Based on the concept of debt duration,this paper proposes the elasticity of cash flow.Then,the debt maturity structure in project financing is discussed.The results show that in the project financing structure,the debt maturity structure is closely related with debt capacity.Higher debt ratio requires short term debt,and vise versa.展开更多
The Shipboard Operation Envelope(SOE) is the safe boundary of the helicopter/ship dynamic interface. The night deck on a ship is usually behind the hangar, where the airflow is turbulent due to the influence of the up...The Shipboard Operation Envelope(SOE) is the safe boundary of the helicopter/ship dynamic interface. The night deck on a ship is usually behind the hangar, where the airflow is turbulent due to the influence of the upper structure, wind and ship speed. The turbulent airnow is the major adverse factor for the safety of shipboard operations. In this paper, the night deck abbot is analysed as the superposition of two penyndicular 2-D airflows.N-S equations are used to calculate the velocity field and the range of turbulent airflow using finite element method. The result is correspondent well with test. Incorporating the influence of the airflow and giving some restrictions on the movements of the ship and on the control margin of the helicopter, the operation envelopes are calculated. The operation envelopes include three types for hovering over the deck, taking-off from and landing on ship, and landing with a landing-aid system. These results are helpful to the pilot training and night safety.展开更多
Let x 1,x 2,… be independent identically distributed (i.i.d.) random variables, in which x n=0 or 1 and the probability of {x n=1} is p. Here p is unknown. Let τ be any finite stopping ...Let x 1,x 2,… be independent identically distributed (i.i.d.) random variables, in which x n=0 or 1 and the probability of {x n=1} is p. Here p is unknown. Let τ be any finite stopping time for (x n,n1). For any sequential sample (x 1,x 2,…,x τ ) and γ∈(0,1), we have given an optimal confidence limit of p with confidence level γ . Some related problems are also discussed.展开更多
Using module class C R=Mx∈M,xRT=0,T∈I , we introduced the concepts of C R finitely generated module, C R finitely presented module and C R regular ring. We also discussed the criterion for C ...Using module class C R=Mx∈M,xRT=0,T∈I , we introduced the concepts of C R finitely generated module, C R finitely presented module and C R regular ring. We also discussed the criterion for C R regular ring,and the relations between C R regular ring and C R FP injective module.展开更多
In order to investigate the flexural behaviors of engineered cementitious composites (ECC), theoretical and experimental researches are done on flexural doublereinforced ECC beams. Based on the assumption of the pla...In order to investigate the flexural behaviors of engineered cementitious composites (ECC), theoretical and experimental researches are done on flexural doublereinforced ECC beams. Based on the assumption of the plane section remaining plane in bending and simplified constitutive models of materials, the calculation methods of load carrying capacities for different critical stages are obtained. Then, these calculation methods are demonstrated by comparing the test results with the calculation results. Finally, based on the proposed theoretical formulae, the effects of the compression strength, compression strain and tension strength of ECC, and the reinforcement ratio on the flexural behaviors of double-reinforced ECC beams are analyzed. The calculated and measured results are in good agreement, which indicates that the theoretical model can be used to predict the momentcurvature response of steel reinforced ECC beams. And the results of parametric studies show that the increase in the compression strength of ECC can greatly improve the flexural performance of beams; the increase in the ultimate compression strain can significantly improve the ultimate curvature and ductility, but has little effect on the load bearing capacity of beams. little effect on the flexural The tensile strength of ECC has behaviors of ECC beams. The increase in the steel reinforcement ratio can lead to significant improvement of the load bearing capacity and the stiffness of beams, but a degradation of the ductility of beams. The theoretical model and parameter analysis results in this paper are instructive for the design of steel reinforced ECC beams.展开更多
基金Project(ZDRW-ZS-2021-3)supported by the Key Deployment Projects of Chinese Academy of SciencesProjects(52179116,51991392)supported by the National Natural Science Foundation of China。
文摘In the process of shield tunneling through soft soil layers,the presence of confined water ahead poses a significant threat to the stability of the tunnel face.Therefore,it is crucial to consider the impact of confined water on the limit support pressure of the tunnel face.This study employed the finite element method(FEM)to analyze the limit support pressure of shield tunnel face instability within a pressurized water-containing layer.Subsequently,a multiple linear regression approach was applied to derive a concise solution formula for the limit support pressure,incorporating various influencing factors.The analysis yields the following conclusions:1)The influence of confined water on the instability mode of the tunnel face in soft soil layers makes the displacement response of the strata not significant when the face is unstable;2)The limit support pressure increases approximately linearly with the pressure head,shield tunnel diameter,and tunnel burial depth.And inversely proportional to the thickness of the impermeable layer,soil cohesion and internal friction angle;3)Through an engineering case study analysis,the results align well with those obtained from traditional theoretical methods,thereby validating the rationality of the equations proposed in this paper.Furthermore,the proposed equations overcome the limitation of traditional theoretical approaches considering the influence of changes in impermeable layer thickness.It can accurately depict the dynamic variation in the required limit support pressure to maintain the stability of the tunnel face during shield tunneling,thus better reflecting engineering reality.
基金Supported by National Natural Science Foundation of China(12061041)Jiangxi Provincial Natural Science Foundation(20232BAB201003).
文摘In this paper,we consider the truncated multiplicity finite range set problem of meromorphic functions on some complex disc.By using the value distribution theory of meromorphic functions,we establish a second main theorem for meromorphic functions with finite growth index which share meromorphic functions(may not be small functions).As its application,we also extend the result of a finite range set with truncated multiplicity.
基金supported by the Natural Science Foundation of China(Grant No.40574050,40821062)the National Basic Research Program of China(Grant No.2007CB209602)the Key Research Program of China National Petroleum Corporation(Grant No.06A10101)
文摘Seismic modeling is a useful tool for studying the propagation of seismic waves within complex structures. However, traditional methods of seismic simulation cannot meet the needs for studying seismic wavefields in the complex geological structures found in seismic exploration of the mountainous area in Northwestern China. More powerful techniques of seismic modeling are demanded for this purpose. In this paper, two methods of finite element-finite difference method (FE-FDM) and arbitrary difference precise integration (ADPI) for seismic forward modeling have been developed and implemented to understand the behavior of seismic waves in complex geological subsurface structures and reservoirs. Two case studies show that the FE-FDM and ADPI techniques are well suited to modeling seismic wave propagation in complex geology.
文摘The penetration resistance of Kevlar-129 fiber reinforced composite materials was investigated with AUTODYN software.The ballistic limits of the fragment that pierced 6kinds of target plates were obtained by finite element simulation when the 10 g fragment simulation projectile(FSP)impacting to the target plates of different thickness values of 8,10,12,14,16 and 18mm with appropriate velocity,respectively,and the influences of thickness on the ballistic limits and the specific energy absorption were analyzed.The results show that the ballistic limit of Kevlar-129 fiber reinforced composite plates presents linear growth with the increase of the target thickness in the range from 8to 18 mm.The specific energy absorption of plates presents approximately linear growth,but there is slightly slow growth in the range from 10 to 16mm of the target thickness.It also can be found that the influences of plate thickness and surface density on the varying pattern of specific energy absorption are almost the same.Therefore,both of them can be used to characterize the variation of specific energy absorption under the impact of the FSP fragment.
文摘Based on the experimental study and inelastic theory, the ultimate flexuralcapacity of steel encased concrete composite beams are derived. The difference between steel encasedconcrete composite beams with full shear connection and beams with partial shear connection,together with the relationship between the inelastic neutral axis of steel parts and concrete parts,are considered in the formulae. The calculation results of the eight specimens with full shearconnection and the three specimens with partial shear connection are in good agreement with theexperimental data, which validates the effectiveness and efficiency of the proposed calculationmethods. Furthermore, the nonlinear finite element analysis of the ultimate flexural capacity of thesteel encased concrete composite beams is performed. Nonlinear material properties and nonlinearcontact properties are considered in the finite element analysis. The finite element analyticalresults also correlate well with the experimental data.
文摘Based on the concept of debt duration,this paper proposes the elasticity of cash flow.Then,the debt maturity structure in project financing is discussed.The results show that in the project financing structure,the debt maturity structure is closely related with debt capacity.Higher debt ratio requires short term debt,and vise versa.
文摘The Shipboard Operation Envelope(SOE) is the safe boundary of the helicopter/ship dynamic interface. The night deck on a ship is usually behind the hangar, where the airflow is turbulent due to the influence of the upper structure, wind and ship speed. The turbulent airnow is the major adverse factor for the safety of shipboard operations. In this paper, the night deck abbot is analysed as the superposition of two penyndicular 2-D airflows.N-S equations are used to calculate the velocity field and the range of turbulent airflow using finite element method. The result is correspondent well with test. Incorporating the influence of the airflow and giving some restrictions on the movements of the ship and on the control margin of the helicopter, the operation envelopes are calculated. The operation envelopes include three types for hovering over the deck, taking-off from and landing on ship, and landing with a landing-aid system. These results are helpful to the pilot training and night safety.
文摘Let x 1,x 2,… be independent identically distributed (i.i.d.) random variables, in which x n=0 or 1 and the probability of {x n=1} is p. Here p is unknown. Let τ be any finite stopping time for (x n,n1). For any sequential sample (x 1,x 2,…,x τ ) and γ∈(0,1), we have given an optimal confidence limit of p with confidence level γ . Some related problems are also discussed.
文摘Using module class C R=Mx∈M,xRT=0,T∈I , we introduced the concepts of C R finitely generated module, C R finitely presented module and C R regular ring. We also discussed the criterion for C R regular ring,and the relations between C R regular ring and C R FP injective module.
基金The National Natural Science Foundation of China(No.51278118)Program for Special Talents in Six Fields of Jiangsu Province(No.2011JZ010)+1 种基金the Natural Science Foundation of Jiangsu(No.BK2012756)the National Undergraduate Innovative Experiment Program(No.111028660)
文摘In order to investigate the flexural behaviors of engineered cementitious composites (ECC), theoretical and experimental researches are done on flexural doublereinforced ECC beams. Based on the assumption of the plane section remaining plane in bending and simplified constitutive models of materials, the calculation methods of load carrying capacities for different critical stages are obtained. Then, these calculation methods are demonstrated by comparing the test results with the calculation results. Finally, based on the proposed theoretical formulae, the effects of the compression strength, compression strain and tension strength of ECC, and the reinforcement ratio on the flexural behaviors of double-reinforced ECC beams are analyzed. The calculated and measured results are in good agreement, which indicates that the theoretical model can be used to predict the momentcurvature response of steel reinforced ECC beams. And the results of parametric studies show that the increase in the compression strength of ECC can greatly improve the flexural performance of beams; the increase in the ultimate compression strain can significantly improve the ultimate curvature and ductility, but has little effect on the load bearing capacity of beams. little effect on the flexural The tensile strength of ECC has behaviors of ECC beams. The increase in the steel reinforcement ratio can lead to significant improvement of the load bearing capacity and the stiffness of beams, but a degradation of the ductility of beams. The theoretical model and parameter analysis results in this paper are instructive for the design of steel reinforced ECC beams.