A novel process aimed at the comprehensive utilization of sintering dust was developed by combining wetting grinding with sulfidization flotation. The mineralogical characteristics of the sintering dust and products w...A novel process aimed at the comprehensive utilization of sintering dust was developed by combining wetting grinding with sulfidization flotation. The mineralogical characteristics of the sintering dust and products were studied by powder wettability analysis, X-ray diffraction(XRD), scanning electron microscopy(SEM) and mineral liberation analyzer(MLA). It was found that the primary lead species was laurionite and most of the particles were overwrapped with KCl. Wetting grinding was shown to accelerate the dispersion of sintering dust and transform the KCl overlay to a leachate with 20.78 g/L of K+. A lead and silver concentrate consisting of 40.82% of Pb and 0.96 kg/t of Ag was achieved, while an iron concentrate with 60.89% of Fe was gained as tailings among sulfidization flotation. The recoveries of Pb, Ag and Fe were 89.57%, 87.85% and 88.58%, respectively. The results indicate that this method is a feasible and promising process for the comprehensive utilization of sintering dust.展开更多
基金Project(CX2015B053)supported by the Hunan Provincial Innovation Foundation for PostgraduateChinaProject(B14034)supported by National 111 Project of China
文摘A novel process aimed at the comprehensive utilization of sintering dust was developed by combining wetting grinding with sulfidization flotation. The mineralogical characteristics of the sintering dust and products were studied by powder wettability analysis, X-ray diffraction(XRD), scanning electron microscopy(SEM) and mineral liberation analyzer(MLA). It was found that the primary lead species was laurionite and most of the particles were overwrapped with KCl. Wetting grinding was shown to accelerate the dispersion of sintering dust and transform the KCl overlay to a leachate with 20.78 g/L of K+. A lead and silver concentrate consisting of 40.82% of Pb and 0.96 kg/t of Ag was achieved, while an iron concentrate with 60.89% of Fe was gained as tailings among sulfidization flotation. The recoveries of Pb, Ag and Fe were 89.57%, 87.85% and 88.58%, respectively. The results indicate that this method is a feasible and promising process for the comprehensive utilization of sintering dust.