A batch experiment was performed to investigate nonequilibrium adsorption behavior of atrazine (2-chloro-4-ethylamino-6-isopropylamlno-1,3,5-triazlne) on a fluvo-aquic soil. The amount of atrazine sorbed increased w...A batch experiment was performed to investigate nonequilibrium adsorption behavior of atrazine (2-chloro-4-ethylamino-6-isopropylamlno-1,3,5-triazlne) on a fluvo-aquic soil. The amount of atrazine sorbed increased with increasing adsorption contact periods. For a range of initial atrazlne concentrations, the percentage of atrazine sorbed within 24 h ranged from 24% to 77% of the observed total amount sorbed for the longest contact period; when adsorption contact periods were more than 72 h, the deviations in curves fitted using a nonlinear Freundllch equation gradually became less. The opposite trend was observed for the atrazine concentrations in solution. The effect of adsorption contact periods on atrazine adsorption behavior was evaluated by interpreting the temporal variations in linear and nonlinear Freundlich equation parameters obtained from the phase-distribution relationships. As the adsorption contact period increased, the nonlinear Freundlich capacity coefficient kf showed a significant linear increase (r^2 = 0.9063, P 〈 0.001). However, a significant negative linear correlation was observed for the nonlinear coefficient n, a dimensionless parameter (r^2 = 0.5666, P 〈 0.05). Furthermore, the linear distribution coefficient kd ranged from 0.38 to 1.44 and exhibited a significant linear correlation to the adsorption contact period (r^2 = 0.72, P 〈 0.01). The parameters kf and n obtained from a time-dependent isotherm rather than the distribution coefficient kd estimated using the linear Freundlich equation were more appropriate to predict the herbicide residue in the field and thus more meaningful for environmental assessment.展开更多
A bacterial strain,designated as LS,was isolated from a contaminated soil and was found to be capable of utilizing quinclorac,bensulfuronmethyl,and a mixture of the two as carbon and energy sources for growth. Strain ...A bacterial strain,designated as LS,was isolated from a contaminated soil and was found to be capable of utilizing quinclorac,bensulfuronmethyl,and a mixture of the two as carbon and energy sources for growth. Strain LS was identified as Ochrobactrum sp. based on its physiological-biochemical properties,16S rDNA sequences,and phylogenetic analysis. The extent of degradation of quinclorac and bensulfuronmethyl at initial concentrations of 1.5 and 0.1 g L-1 was 90% and 67%,respectively,as measured by high performance liquid chromatography(HPLC) . When a herbicide mixture of 0.34 g L-1 quinclorac and 0.02 g L-1 bensulfuronmethyl was applied as carbon sources,quinclorac and bensulfuronmethyl were degraded at 95.7% and 67.5%,respectively. It appears that quinclorac is utilized more easily in a mixture than in a single state. The optimal temperature for growth of strain LS was 37 ℃. Strain LS grew well at pH 6 to 9 and had the highest degradation level for quinclorac and bensulfuronmethyl at an initial pH of 7 and 8,respectively. Addition of 0.25 g L-1 yeast extract could promote the growth and extent of degradation of quinclorac and bensulfuronmethyl by strain LS. Strain LS also showed the capability to degrade other aromatic compounds such as catechol,propisochlor,4-chloro-2-methylphenoxyacetic acid sodium(MCPA-Na) and imazethapy. The isolate LS shows a huge potential to be used in bioremediation for treating complex herbicide residues.展开更多
Forty-five rhizofungal isolates were isolated, identified and characterized from 11 herbicides polluted-soil. Among the isolates, 10 fungal species proved to be the most potent and promising ones in herbicides toleran...Forty-five rhizofungal isolates were isolated, identified and characterized from 11 herbicides polluted-soil. Among the isolates, 10 fungal species proved to be the most potent and promising ones in herbicides tolerance. The herbicides exhibited severe and dramatic effect and modulation on fungal DNA and protein represented in DNA and protein profile. Severely loss in the total soluble cell ions (SCI) and total cell protein percentage (TCPC) concentrations were observed. The loss of SCI by glyphosate, Aspergillus flavus (86,30%) was the most affected one, followed by Penicillium spiculisporus (76,30%), Penicilliurn verruculosum (64.40%) and Alternaria tenuissima (64%), respectively. For pendimethalin, Alternaria tenuissima (54.01%) was the most affected fungi. For diclofop-methyl, Penicillium spiculisporus (74.20%) was the most affected fungi. The loss of TCPC by glyphosate, Alternaria tenuissima (64.71%) was the most effected fungi, followed by Penicillium spiculisporus (57.14%), respectively. For pendimethalin, A. terreus (54.29%) w, as the most affected fungi. For diclofop-methyl, Penicillium spiculisporus (60%) was the most affected fungi, fbllowed by Alternaria tenuissima (58.82%), Aspergillus tamarii (55.56%), respectively. The results proved severe reductions and alteration in protein, SCI, TCPC and DNA in fungal strains exposed to these herbicides which might reflex a degree of tolerance occurred during the assimilation of those toxic compounds from the pesticides polluted-soil.展开更多
Alachlor is used widely as a herbicide,but is an environmental endocrine disruptor. O 3/H 2O 2 system is used as catalyst to delve on the degradation efficiency of alachlor. The amount of the catalyst H 2O 2,the pH va...Alachlor is used widely as a herbicide,but is an environmental endocrine disruptor. O 3/H 2O 2 system is used as catalyst to delve on the degradation efficiency of alachlor. The amount of the catalyst H 2O 2,the pH value of the soluble, the temperature and quality of water sample are changed to investigate the effect of these factors on the degradation of alachlor. The degradation of alachlor is qualitatively analyzed through their GS MS spectra and the possible mechanism of the degradation of alachlor is discussed as well.展开更多
Chlorobenzoic Acids are toxic organic compounds largely distributed in soils and sediments. They can be degraded to various products by microorgans. This paper is a review of the literature on biodegradability of the ...Chlorobenzoic Acids are toxic organic compounds largely distributed in soils and sediments. They can be degraded to various products by microorgans. This paper is a review of the literature on biodegradability of the chlorobenzoic acids. The degradation pathways, degradation genes, role of transposable elements, and construction of strains are discussed. A brief introduction is given on the environmental impacts and the pollution control.展开更多
The adsorption capacity of powdered active carbons, used in a water treatment facility, for the removal of the triazine herbicides propazine, prometryn and prometon, was evaluated. Kinetic studies showed that some of ...The adsorption capacity of powdered active carbons, used in a water treatment facility, for the removal of the triazine herbicides propazine, prometryn and prometon, was evaluated. Kinetic studies showed that some of the carbon samples used could be suitable in the practice for the treatment of moderate contents of the herbicides in contaminated waters. Equilibrium studies showed that the data fit the Frumkin isotherm. The results show that in the adsorption process there are repulsive lateral interactions that depend mainly of the adsorbate molecules rather than the nature or distribution of adsorption sites. Such lateral interactions seem to be established mainly between the isopropyl groups of adjacent molecules, being of the same order for the three molecules. The effectiveness of the active carbons was evaluated by determining the percentage of reduction achieved by each product.展开更多
Predators induce plastic responses in multiple prey taxa, ranging from morphological to behavioral or physiological changes. In amphibians, tadpoles activate plastic responses to reduce predation risk by reducing thei...Predators induce plastic responses in multiple prey taxa, ranging from morphological to behavioral or physiological changes. In amphibians, tadpoles activate plastic responses to reduce predation risk by reducing their activity rate and altering their morphology, specifically tail depth and pigmentation. Furthermore, there is now evidence that tadpoles' defenses are modi- fied when predators combine with other stressful factors such as pollutants or competitors, but our knowledge on the physiologi- cal responses underlying these responses is still scarce. Here we study physiological responses in Pelobates cultripes tadpoles exposed to a natural predator (larvae of the aquatic beetle Dytiscus circumflexus), non-lethal concentrations of herbicide (gly- phosate, 0.5 mg/L and 1.0 mg/L) or both factors combined. We measured corticosterone levels, standard metabolic rate, oxidative damage (TBARS) and activity of antioxidant enzymes, and immune response (via leukocyte count). Tadpoles reduced their corti- costerone concentration by ca. 24% in the presence of predator cues, whereas corticosterone did not change in the presence of glyphosate. Two enzymes involved in antioxidant response also decreased in the presence of predators (14.7% and 13.2% respec- tively) but not to glyphosate. Herbicide, however, increased the number of neutrophils and reduced that of lymphocytes, and had an interaction effect with predator presence. Standard metabolic rate did not vary across treatments in our experiment. Thus we show a marked physiological response to the presence of predators but little evidence for interaction between predators and low levels of herbicide. Multiple assessment of the physiological state of animals is important to understand the basis and conse- quences ofphenotypic plasticity展开更多
A simple one step solvothermal strategy using non-toxic and cost-effective precursors has been developed to prepare magnetite/reduced graphene oxide (MRGO) nanocomposites for removal of dye pollutants. Taking advant...A simple one step solvothermal strategy using non-toxic and cost-effective precursors has been developed to prepare magnetite/reduced graphene oxide (MRGO) nanocomposites for removal of dye pollutants. Taking advantage of the combined benefits of graphene and magnetic nanoparticles, these MRGO nanocomposites exhibit excellent removal efficiency (over 91% for rhodamine B and over 94% for malachite green) and rapid separation from aqueous solution by an external magnetic field. Interestingly, the performance of the MRGO composites is strongly dependent on both the loading of Fe304 and the pH value. In addition, the adsorption behavior of this new adsorbent fits well with the Freundlich isotherm and the pseudo-second-order kinetic model. In further applications, real samples--including industrial waste water and lake water--have been treated using the MRGO composites. All the results demonstrate that the MRGO composites are effective adsorbents for removal of dye pollutants and thus could provide a new platform for dye decontamination.展开更多
基金Project supported by the National Science Fund for Distinguished Young Scholars,China(No.40325001)the National Basic Research and Development Program of China(No.2002CB410805)the Asia-Link Program(No.CN/AsiaLink/001(81468)).
文摘A batch experiment was performed to investigate nonequilibrium adsorption behavior of atrazine (2-chloro-4-ethylamino-6-isopropylamlno-1,3,5-triazlne) on a fluvo-aquic soil. The amount of atrazine sorbed increased with increasing adsorption contact periods. For a range of initial atrazlne concentrations, the percentage of atrazine sorbed within 24 h ranged from 24% to 77% of the observed total amount sorbed for the longest contact period; when adsorption contact periods were more than 72 h, the deviations in curves fitted using a nonlinear Freundllch equation gradually became less. The opposite trend was observed for the atrazine concentrations in solution. The effect of adsorption contact periods on atrazine adsorption behavior was evaluated by interpreting the temporal variations in linear and nonlinear Freundlich equation parameters obtained from the phase-distribution relationships. As the adsorption contact period increased, the nonlinear Freundlich capacity coefficient kf showed a significant linear increase (r^2 = 0.9063, P 〈 0.001). However, a significant negative linear correlation was observed for the nonlinear coefficient n, a dimensionless parameter (r^2 = 0.5666, P 〈 0.05). Furthermore, the linear distribution coefficient kd ranged from 0.38 to 1.44 and exhibited a significant linear correlation to the adsorption contact period (r^2 = 0.72, P 〈 0.01). The parameters kf and n obtained from a time-dependent isotherm rather than the distribution coefficient kd estimated using the linear Freundlich equation were more appropriate to predict the herbicide residue in the field and thus more meaningful for environmental assessment.
基金the National Natural Science Foundation of China (Nos.40501037 and 30570053)the National Key Technologies Research and Development Program of China during the 11th Five-Year Plan Period(No.2006BAJ08B01).
文摘A bacterial strain,designated as LS,was isolated from a contaminated soil and was found to be capable of utilizing quinclorac,bensulfuronmethyl,and a mixture of the two as carbon and energy sources for growth. Strain LS was identified as Ochrobactrum sp. based on its physiological-biochemical properties,16S rDNA sequences,and phylogenetic analysis. The extent of degradation of quinclorac and bensulfuronmethyl at initial concentrations of 1.5 and 0.1 g L-1 was 90% and 67%,respectively,as measured by high performance liquid chromatography(HPLC) . When a herbicide mixture of 0.34 g L-1 quinclorac and 0.02 g L-1 bensulfuronmethyl was applied as carbon sources,quinclorac and bensulfuronmethyl were degraded at 95.7% and 67.5%,respectively. It appears that quinclorac is utilized more easily in a mixture than in a single state. The optimal temperature for growth of strain LS was 37 ℃. Strain LS grew well at pH 6 to 9 and had the highest degradation level for quinclorac and bensulfuronmethyl at an initial pH of 7 and 8,respectively. Addition of 0.25 g L-1 yeast extract could promote the growth and extent of degradation of quinclorac and bensulfuronmethyl by strain LS. Strain LS also showed the capability to degrade other aromatic compounds such as catechol,propisochlor,4-chloro-2-methylphenoxyacetic acid sodium(MCPA-Na) and imazethapy. The isolate LS shows a huge potential to be used in bioremediation for treating complex herbicide residues.
文摘Forty-five rhizofungal isolates were isolated, identified and characterized from 11 herbicides polluted-soil. Among the isolates, 10 fungal species proved to be the most potent and promising ones in herbicides tolerance. The herbicides exhibited severe and dramatic effect and modulation on fungal DNA and protein represented in DNA and protein profile. Severely loss in the total soluble cell ions (SCI) and total cell protein percentage (TCPC) concentrations were observed. The loss of SCI by glyphosate, Aspergillus flavus (86,30%) was the most affected one, followed by Penicillium spiculisporus (76,30%), Penicilliurn verruculosum (64.40%) and Alternaria tenuissima (64%), respectively. For pendimethalin, Alternaria tenuissima (54.01%) was the most affected fungi. For diclofop-methyl, Penicillium spiculisporus (74.20%) was the most affected fungi. The loss of TCPC by glyphosate, Alternaria tenuissima (64.71%) was the most effected fungi, followed by Penicillium spiculisporus (57.14%), respectively. For pendimethalin, A. terreus (54.29%) w, as the most affected fungi. For diclofop-methyl, Penicillium spiculisporus (60%) was the most affected fungi, fbllowed by Alternaria tenuissima (58.82%), Aspergillus tamarii (55.56%), respectively. The results proved severe reductions and alteration in protein, SCI, TCPC and DNA in fungal strains exposed to these herbicides which might reflex a degree of tolerance occurred during the assimilation of those toxic compounds from the pesticides polluted-soil.
文摘Alachlor is used widely as a herbicide,but is an environmental endocrine disruptor. O 3/H 2O 2 system is used as catalyst to delve on the degradation efficiency of alachlor. The amount of the catalyst H 2O 2,the pH value of the soluble, the temperature and quality of water sample are changed to investigate the effect of these factors on the degradation of alachlor. The degradation of alachlor is qualitatively analyzed through their GS MS spectra and the possible mechanism of the degradation of alachlor is discussed as well.
文摘Chlorobenzoic Acids are toxic organic compounds largely distributed in soils and sediments. They can be degraded to various products by microorgans. This paper is a review of the literature on biodegradability of the chlorobenzoic acids. The degradation pathways, degradation genes, role of transposable elements, and construction of strains are discussed. A brief introduction is given on the environmental impacts and the pollution control.
文摘The adsorption capacity of powdered active carbons, used in a water treatment facility, for the removal of the triazine herbicides propazine, prometryn and prometon, was evaluated. Kinetic studies showed that some of the carbon samples used could be suitable in the practice for the treatment of moderate contents of the herbicides in contaminated waters. Equilibrium studies showed that the data fit the Frumkin isotherm. The results show that in the adsorption process there are repulsive lateral interactions that depend mainly of the adsorbate molecules rather than the nature or distribution of adsorption sites. Such lateral interactions seem to be established mainly between the isopropyl groups of adjacent molecules, being of the same order for the three molecules. The effectiveness of the active carbons was evaluated by determining the percentage of reduction achieved by each product.
文摘Predators induce plastic responses in multiple prey taxa, ranging from morphological to behavioral or physiological changes. In amphibians, tadpoles activate plastic responses to reduce predation risk by reducing their activity rate and altering their morphology, specifically tail depth and pigmentation. Furthermore, there is now evidence that tadpoles' defenses are modi- fied when predators combine with other stressful factors such as pollutants or competitors, but our knowledge on the physiologi- cal responses underlying these responses is still scarce. Here we study physiological responses in Pelobates cultripes tadpoles exposed to a natural predator (larvae of the aquatic beetle Dytiscus circumflexus), non-lethal concentrations of herbicide (gly- phosate, 0.5 mg/L and 1.0 mg/L) or both factors combined. We measured corticosterone levels, standard metabolic rate, oxidative damage (TBARS) and activity of antioxidant enzymes, and immune response (via leukocyte count). Tadpoles reduced their corti- costerone concentration by ca. 24% in the presence of predator cues, whereas corticosterone did not change in the presence of glyphosate. Two enzymes involved in antioxidant response also decreased in the presence of predators (14.7% and 13.2% respec- tively) but not to glyphosate. Herbicide, however, increased the number of neutrophils and reduced that of lymphocytes, and had an interaction effect with predator presence. Standard metabolic rate did not vary across treatments in our experiment. Thus we show a marked physiological response to the presence of predators but little evidence for interaction between predators and low levels of herbicide. Multiple assessment of the physiological state of animals is important to understand the basis and conse- quences ofphenotypic plasticity
文摘A simple one step solvothermal strategy using non-toxic and cost-effective precursors has been developed to prepare magnetite/reduced graphene oxide (MRGO) nanocomposites for removal of dye pollutants. Taking advantage of the combined benefits of graphene and magnetic nanoparticles, these MRGO nanocomposites exhibit excellent removal efficiency (over 91% for rhodamine B and over 94% for malachite green) and rapid separation from aqueous solution by an external magnetic field. Interestingly, the performance of the MRGO composites is strongly dependent on both the loading of Fe304 and the pH value. In addition, the adsorption behavior of this new adsorbent fits well with the Freundlich isotherm and the pseudo-second-order kinetic model. In further applications, real samples--including industrial waste water and lake water--have been treated using the MRGO composites. All the results demonstrate that the MRGO composites are effective adsorbents for removal of dye pollutants and thus could provide a new platform for dye decontamination.