In this paper, we construct the EB estim ation for the parameter of the two-dimensional one side truncat ed distribution fam ilies using Linex loss. The convergence rate of EB estimation is given and it is shown tha...In this paper, we construct the EB estim ation for the parameter of the two-dimensional one side truncat ed distribution fam ilies using Linex loss. The convergence rate of EB estimation is given and it is shown that the proposed empirical Bayes estimaiton can be arbitrarily close to 1 under certain conditions.展开更多
This paper studies wavelet estimations for supersmooth density functions with additive noises. We first show lower bounds of Lprisk(1 p < ∞) with both moderately and severely ill-posed noises. Then a Shannon wavel...This paper studies wavelet estimations for supersmooth density functions with additive noises. We first show lower bounds of Lprisk(1 p < ∞) with both moderately and severely ill-posed noises. Then a Shannon wavelet estimator provides optimal or nearly-optimal estimations over Lprisks for p 2, and a nearly-optimal result for 1 < p < 2 under both noises. In the nearly-optimal cases, the ratios of upper and lower bounds are determined. When p = 1, we give a nearly-optimal estimation with moderately ill-posed noise by using the Meyer wavelet. Finally, the practical estimators are considered. Our results are motivated by the work of Pensky and Vidakovic(1999), Butucea and Tsybakov(2008), Comte et al.(2006), Lacour(2006) and Lounici and Nickl(2011).展开更多
文摘In this paper, we construct the EB estim ation for the parameter of the two-dimensional one side truncat ed distribution fam ilies using Linex loss. The convergence rate of EB estimation is given and it is shown that the proposed empirical Bayes estimaiton can be arbitrarily close to 1 under certain conditions.
基金supported by National Natural Science Foundation of China (Grant Nos. 11526150, 11601383 and 11271038)
文摘This paper studies wavelet estimations for supersmooth density functions with additive noises. We first show lower bounds of Lprisk(1 p < ∞) with both moderately and severely ill-posed noises. Then a Shannon wavelet estimator provides optimal or nearly-optimal estimations over Lprisks for p 2, and a nearly-optimal result for 1 < p < 2 under both noises. In the nearly-optimal cases, the ratios of upper and lower bounds are determined. When p = 1, we give a nearly-optimal estimation with moderately ill-posed noise by using the Meyer wavelet. Finally, the practical estimators are considered. Our results are motivated by the work of Pensky and Vidakovic(1999), Butucea and Tsybakov(2008), Comte et al.(2006), Lacour(2006) and Lounici and Nickl(2011).