Since there are few studies on the performance-based seismic evaluation of the long-span suspension bridge system under two-level earthquake hazard in Chinese code,the developed procedure of this study can be regarded...Since there are few studies on the performance-based seismic evaluation of the long-span suspension bridge system under two-level earthquake hazard in Chinese code,the developed procedure of this study can be regarded as a general program to assess the seismic performance of the overall system for long-span suspension bridges.In the procedure,the probabilistic seismic demand models of multiple bridge components were developed by nonlinear time-history analyses incorporating the related uncertainties,and the component-level fragility curves were calculated by the reasonable definition of limit states of the corresponding components in combination with seismic hazard analysis.The bridge repair cost ratios used to evaluate the system seismic performance were derived through the performance-based methodology and the damage probability of critical components.Furthermore,the repair cost ratios of the overall bridge system that was retrofitted with fluid viscous dampers for the main bridge and changed restraint systems for the approach bridges were compared.The results show that peak ground velocity and peak ground acceleration can be selected as the optimal intensity measurements of long-span suspension bridges using the TOPSIS(technique for order preference by similarity to an ideal solution).The bridge repair cost ratios can serve as accurate evaluation indicators to provide an efficient evaluation of retrofit measures.The seismic evaluation of long-span bridges is misled when ignoring the interaction of adjacent structures.However,the repair cost ratios of a bridge system that has optimum seismic performance are less sensitive to the relative importance of adjacent structures.展开更多
Based on the analysis about the hydrogeological conditions and engineering geological conditions, this paper makes analysis on the possible risks of the deep overlying stratum foundation and establishes the risk evalu...Based on the analysis about the hydrogeological conditions and engineering geological conditions, this paper makes analysis on the possible risks of the deep overlying stratum foundation and establishes the risk evaluation index system during the foundation operating period. Such methods as analytic hierarchy process (AHP) , Delphi method and fuzzy comprehensive evaluation method are adopted to make the quantitative analysis on the risk factors and establish the risk judgment model. According to the actual engineering of Taizhou Bridge, the paper evaluates the risk of the foundation during the operating period at the condition of deep overlying stratum. The evaluation results can provide the reference for the risk management of the bridge foundation durin~ the ooerating period.展开更多
Timber bridges can provide an economical alternative to concrete and steel structures, particularly in rural areas where vehicle traffic is light to moderate. The wooden components of bridges have historically been pr...Timber bridges can provide an economical alternative to concrete and steel structures, particularly in rural areas where vehicle traffic is light to moderate. The wooden components of bridges have historically been preserved with either an oil type or waterborne preservative system to protect the wood from decay in order to maintain required performance standards for an extended period of time. The focus of this paper is to describe some of the key preservatives, research and case studies that support use of preserved wood, and some important steps to follow for the appropriate and safe use of preserved wood when the planned application will be in or over aquatic and wetland environments. A wealth of scientific information has been collected and analyzed that clearly suggests the use of preserved wood does not present a significant adverse effect on aquatic and wetland environments. This conclusion is based on two decades of empirical research and case study evaluating the environmental fate and effects of preserved wood, level of migration of contaminates into aquatic and marine environments, and the preserved wood environment. This is particularly true when risks are properly assessed on a project site, the appropriate preservative is selected and the wood is preserved to the Western Wood Preservers Institute's BMPs (best management practices), along with properly installing and maintaining the preserved material. To assist with the assessment process, peer-reviewed risk assessment models for 11 commonly used preservatives have been developed that provide for streamlined data entry by users and allow for evaluation of a structure above and below water. A companion preliminary screening level assessment tool is also available. When these measures are properly utilized engineers, biologists and other responsible officials can be confident that the service life of the preserved wood components will more than likely meet the required performance standards in an environmentally safe manner for up to 50 or more years on a majority of timber bridge projects.展开更多
基金Basic Scientific Research Service Project of Centrallevel Public Welfare Research Institute(No.2016-9018)
文摘Since there are few studies on the performance-based seismic evaluation of the long-span suspension bridge system under two-level earthquake hazard in Chinese code,the developed procedure of this study can be regarded as a general program to assess the seismic performance of the overall system for long-span suspension bridges.In the procedure,the probabilistic seismic demand models of multiple bridge components were developed by nonlinear time-history analyses incorporating the related uncertainties,and the component-level fragility curves were calculated by the reasonable definition of limit states of the corresponding components in combination with seismic hazard analysis.The bridge repair cost ratios used to evaluate the system seismic performance were derived through the performance-based methodology and the damage probability of critical components.Furthermore,the repair cost ratios of the overall bridge system that was retrofitted with fluid viscous dampers for the main bridge and changed restraint systems for the approach bridges were compared.The results show that peak ground velocity and peak ground acceleration can be selected as the optimal intensity measurements of long-span suspension bridges using the TOPSIS(technique for order preference by similarity to an ideal solution).The bridge repair cost ratios can serve as accurate evaluation indicators to provide an efficient evaluation of retrofit measures.The seismic evaluation of long-span bridges is misled when ignoring the interaction of adjacent structures.However,the repair cost ratios of a bridge system that has optimum seismic performance are less sensitive to the relative importance of adjacent structures.
基金National Science and Technology Support Program of China(No.2009BAG15B02)Key Programs for Science and Technology Development of Chinese Transportation Industry(No.2008-353-332-180)
文摘Based on the analysis about the hydrogeological conditions and engineering geological conditions, this paper makes analysis on the possible risks of the deep overlying stratum foundation and establishes the risk evaluation index system during the foundation operating period. Such methods as analytic hierarchy process (AHP) , Delphi method and fuzzy comprehensive evaluation method are adopted to make the quantitative analysis on the risk factors and establish the risk judgment model. According to the actual engineering of Taizhou Bridge, the paper evaluates the risk of the foundation during the operating period at the condition of deep overlying stratum. The evaluation results can provide the reference for the risk management of the bridge foundation durin~ the ooerating period.
文摘Timber bridges can provide an economical alternative to concrete and steel structures, particularly in rural areas where vehicle traffic is light to moderate. The wooden components of bridges have historically been preserved with either an oil type or waterborne preservative system to protect the wood from decay in order to maintain required performance standards for an extended period of time. The focus of this paper is to describe some of the key preservatives, research and case studies that support use of preserved wood, and some important steps to follow for the appropriate and safe use of preserved wood when the planned application will be in or over aquatic and wetland environments. A wealth of scientific information has been collected and analyzed that clearly suggests the use of preserved wood does not present a significant adverse effect on aquatic and wetland environments. This conclusion is based on two decades of empirical research and case study evaluating the environmental fate and effects of preserved wood, level of migration of contaminates into aquatic and marine environments, and the preserved wood environment. This is particularly true when risks are properly assessed on a project site, the appropriate preservative is selected and the wood is preserved to the Western Wood Preservers Institute's BMPs (best management practices), along with properly installing and maintaining the preserved material. To assist with the assessment process, peer-reviewed risk assessment models for 11 commonly used preservatives have been developed that provide for streamlined data entry by users and allow for evaluation of a structure above and below water. A companion preliminary screening level assessment tool is also available. When these measures are properly utilized engineers, biologists and other responsible officials can be confident that the service life of the preserved wood components will more than likely meet the required performance standards in an environmentally safe manner for up to 50 or more years on a majority of timber bridge projects.