Plasma electrolytic oxidation (PEO) ceramic coatings were fabricated in a silicate-based electrolyte with the addition of potassium fluorozirconate (K2ZrF6) on 6063 aluminum alloy, and the effects of current density o...Plasma electrolytic oxidation (PEO) ceramic coatings were fabricated in a silicate-based electrolyte with the addition of potassium fluorozirconate (K2ZrF6) on 6063 aluminum alloy, and the effects of current density on microstructure and properties of the PEO coatings were studied. It was found that pore density of the coatings decreased with increasing the current density. The tribological and hardness tests suggested that the ceramic coating produced under the current density of 15 A/dm2showed the best mechanical property, which matched well with the phase analysis. Electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization curves proved that the coating obtained under 15 A/dm2 displayed the best anti-corrosion property, which was directly connected with morphologies of coatings.展开更多
The Ni-based alloy composite coatings reinforced by nanostructured Al2O3-40%TiO2 multiphase ceramic particles were prepared on the surface of 7005 aluminum alloy by plasma spray technology. The microstructure and trib...The Ni-based alloy composite coatings reinforced by nanostructured Al2O3-40%TiO2 multiphase ceramic particles were prepared on the surface of 7005 aluminum alloy by plasma spray technology. The microstructure and tribological properties of the composite coatings were researched. The results show that the composite coatings mainly consist of γ-Ni, α-Al2O3, γ-Al2O3 and rutile-TiO2 etc, and exhibit lower friction coefficients and wear losses than the Ni-based alloy coatings at different loads and speeds. The composite coating bears low contact stress at 3 N and its wear mechanism is micro-cutting wear. As loads increase to 6-12 N, the contact stress is higher than the elastic limit stress of worn surface, and the wear mechanisms change into multi-plastic deformation wear, micro-brittle fracture wear and abrasive wear. With the increase of speeds, the contact temperature of worn surface increases. The composite coating experiences multi-plastic deformation wear, fatigue wear and adhesive wear.展开更多
Al2O3-13%TiO2 (mass fraction) coatings, prepared by laser cladding on nickel-based alloy, were heated using high frequency induction sources. The coating microstructure and the interface between bond coating and cer...Al2O3-13%TiO2 (mass fraction) coatings, prepared by laser cladding on nickel-based alloy, were heated using high frequency induction sources. The coating microstructure and the interface between bond coating and ceramic coating were characterized by SEM, XRD and EDS. The results show that two-layer substructure exists in the ceramic coating: one layer evolving from fully melted region where the sintered grains grow fully; another layer resembling the liquid-phase-sintered structure consisting of three-dimensional net where the melted Al2O3 particles are embedded in the TiO2-rich matrix. The mechanism of the two-layer substructure formation is also explained in terms of the melting and flattening behavior of the powders during laser cladding processing. The spinel compounds NiAl2O4 and acicular compounds Cr2O3 are discovered in the interface between bond coating and ceramic coating. It proves that the chemical reactions in the laser cladding process will significantly enhance the coating adhesion.展开更多
Plasma electrolytic oxidation(PEO) was developed as a bond coat for air plasma sprayed(APS) nanostructure ZrO2 as top coat to enhance the corrosion resistance and antibacterial activity of Mg alloy. Corrosion beha...Plasma electrolytic oxidation(PEO) was developed as a bond coat for air plasma sprayed(APS) nanostructure ZrO2 as top coat to enhance the corrosion resistance and antibacterial activity of Mg alloy. Corrosion behavior and antibacterial activities of coated and uncoated samples were assessed by electrochemical tests and agar diffusion method toward Escherichia coli(E. coli) bacterial pathogens, respectively. The lowest corrosion current density and the highest charge transfer resistance, phase angle and impedance modulus were observed for PEO/nano-ZrO2 coated sample compared with those of PEO coated and bare Mg alloys. Nano-ZrO2 top coat which has completely sealed PEO bond coat is able to considerably delay aggressive ions transportation towards Mg alloy surface and significantly enhances corrosion resistance of Mg alloy in simulated body fluid(SBF) solution. Moreover, higher antibacterial activity was also observed in PEO/nano-ZrO2 coating against bacterial strains than that of the PEO coated and bare Mg alloys. This observation was attributed to the presence of ZrO2 nanoparticles which decelerate E. coli growth as a result of E. coli membranes.展开更多
This work is focused on developing zinc-doped hydroxyapatite-zeolite(Zn HA-Zeo)and polycaprolactone(PCL)composite coatings on magnesium(Mg)substrate to improve the corrosion resistance and antimicrobial properties.Dip...This work is focused on developing zinc-doped hydroxyapatite-zeolite(Zn HA-Zeo)and polycaprolactone(PCL)composite coatings on magnesium(Mg)substrate to improve the corrosion resistance and antimicrobial properties.Dip-coating technique was used to coat Zn HA-Zeo/PCL on the Mg substrate at room temperature.The samples were subjected to field emission scanning electron microscopy(FESEM),X-ray diffraction(XRD),Fourier transform infrared(FTIR),energy dispersive X-ray spectroscopy(EDX)and antimicrobial potential.Results demonstrated that composite coatings consist of HA,scholzite,zeolite,and PCL phases.EDX spectra indicated the presence of calcium(Ca),silicon(Si),aluminum(Al),zinc(Zn),phosphorus(P)and oxygen(O).The composite surface appeared in spherical-like microstructure on coating with thickness ranging 226-260μm.Zinc-doped HA-Zeo composite coating had a high corrosion resistance and provided sufficient protection to the Mg surface against galvanic corrosion.Doped Zn HA-Zeo coating samples exhibited superior disc inhibition by confirming antimicrobial activity against the E.coli as compared to HA-Zeo sample.Altogether these results showed that the Zn HA-Zeo coatings not only improved the corrosion resistance,but also enhanced the antimicrobial property and hence they can be used as suitable candidates for implant applications.展开更多
A combined process of molten salt electro-deoxidation and vacuum hot-pressing sintering was proposed to prepare AlCrFeNiTi_(x) high-entropy alloy(HEA)-TiN ceramic coating composites on low-carbon steel surfaces,where ...A combined process of molten salt electro-deoxidation and vacuum hot-pressing sintering was proposed to prepare AlCrFeNiTi_(x) high-entropy alloy(HEA)-TiN ceramic coating composites on low-carbon steel surfaces,where nitrides were introduced from BN isolater between graphite mold and HEA powders.The effect of Ti content on the microstructure,ultimate tensile strength,hardness,and wear resistance of the composites was investigated,and the bonding mechanism was elucidated.Results demonstrate that the composites have excellent hardness and wear resistance.The hardness of composites is significantly increased with the increase in Ti content.The extremely high wear resistance is attributed to the extremely high melting point and high thermal hardness of TiN,which can effectively prevent oxidation deformation of the worn surface.展开更多
TiCx-NiTi2/Ti cermet composite coatings C1 and C2 with gradient TiCx reinforcements were prepared on TC4 titanium alloy by laser cladding method.The microstructure and phase compositions were analyzed by means of scan...TiCx-NiTi2/Ti cermet composite coatings C1 and C2 with gradient TiCx reinforcements were prepared on TC4 titanium alloy by laser cladding method.The microstructure and phase compositions were analyzed by means of scanning electron microscopy(SEM),energy-dispersive spectroscopy(EDS)and X-ray diffraction(XRD)meter.The TiCx exhibited a dendritic microstructure,and homogeneously dispersed in the Ti-based matrix where NiTi2 was embedded.With increasing ingredient supercooling,temperature gradient and cooling temperature,the dendrites displayed a finer morphology with longer primary trunks and intensified side branches in the dilution zone.But the smoothed,coarse columnar ones became dominant in the upper clad layer due to the repeated energy input during multi-track cladding.The Vickers microhardness presented a linear change trend through the cross-sections,which well confirmed the gradient distribution of TiCx.With more TiCx,C1 presented higher hardness than C2.展开更多
基金Project(51371039)supported by the National Natural Science Foundation of China
文摘Plasma electrolytic oxidation (PEO) ceramic coatings were fabricated in a silicate-based electrolyte with the addition of potassium fluorozirconate (K2ZrF6) on 6063 aluminum alloy, and the effects of current density on microstructure and properties of the PEO coatings were studied. It was found that pore density of the coatings decreased with increasing the current density. The tribological and hardness tests suggested that the ceramic coating produced under the current density of 15 A/dm2showed the best mechanical property, which matched well with the phase analysis. Electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization curves proved that the coating obtained under 15 A/dm2 displayed the best anti-corrosion property, which was directly connected with morphologies of coatings.
文摘The Ni-based alloy composite coatings reinforced by nanostructured Al2O3-40%TiO2 multiphase ceramic particles were prepared on the surface of 7005 aluminum alloy by plasma spray technology. The microstructure and tribological properties of the composite coatings were researched. The results show that the composite coatings mainly consist of γ-Ni, α-Al2O3, γ-Al2O3 and rutile-TiO2 etc, and exhibit lower friction coefficients and wear losses than the Ni-based alloy coatings at different loads and speeds. The composite coating bears low contact stress at 3 N and its wear mechanism is micro-cutting wear. As loads increase to 6-12 N, the contact stress is higher than the elastic limit stress of worn surface, and the wear mechanisms change into multi-plastic deformation wear, micro-brittle fracture wear and abrasive wear. With the increase of speeds, the contact temperature of worn surface increases. The composite coating experiences multi-plastic deformation wear, fatigue wear and adhesive wear.
基金Project (59975046) supported by the National Natural Science Foundation of China
文摘Al2O3-13%TiO2 (mass fraction) coatings, prepared by laser cladding on nickel-based alloy, were heated using high frequency induction sources. The coating microstructure and the interface between bond coating and ceramic coating were characterized by SEM, XRD and EDS. The results show that two-layer substructure exists in the ceramic coating: one layer evolving from fully melted region where the sintered grains grow fully; another layer resembling the liquid-phase-sintered structure consisting of three-dimensional net where the melted Al2O3 particles are embedded in the TiO2-rich matrix. The mechanism of the two-layer substructure formation is also explained in terms of the melting and flattening behavior of the powders during laser cladding processing. The spinel compounds NiAl2O4 and acicular compounds Cr2O3 are discovered in the interface between bond coating and ceramic coating. It proves that the chemical reactions in the laser cladding process will significantly enhance the coating adhesion.
基金the Universiti Teknologi Malaysia (UTM) for providing research facilities and financial support under Grants No:(1)UTM-Research University Grant (RUG) (Q.J130000.2524.16H35),and (2)Nippon Sheet Glass (NSG) R.J130000.7324.4B300
文摘Plasma electrolytic oxidation(PEO) was developed as a bond coat for air plasma sprayed(APS) nanostructure ZrO2 as top coat to enhance the corrosion resistance and antibacterial activity of Mg alloy. Corrosion behavior and antibacterial activities of coated and uncoated samples were assessed by electrochemical tests and agar diffusion method toward Escherichia coli(E. coli) bacterial pathogens, respectively. The lowest corrosion current density and the highest charge transfer resistance, phase angle and impedance modulus were observed for PEO/nano-ZrO2 coated sample compared with those of PEO coated and bare Mg alloys. Nano-ZrO2 top coat which has completely sealed PEO bond coat is able to considerably delay aggressive ions transportation towards Mg alloy surface and significantly enhances corrosion resistance of Mg alloy in simulated body fluid(SBF) solution. Moreover, higher antibacterial activity was also observed in PEO/nano-ZrO2 coating against bacterial strains than that of the PEO coated and bare Mg alloys. This observation was attributed to the presence of ZrO2 nanoparticles which decelerate E. coli growth as a result of E. coli membranes.
基金supported by University of Engineering and Technology,Lahore,faculty under research project#ORIC/102-ASRB/1288 and UTM,FRGS grant#R.J130000.7845.4F768.
文摘This work is focused on developing zinc-doped hydroxyapatite-zeolite(Zn HA-Zeo)and polycaprolactone(PCL)composite coatings on magnesium(Mg)substrate to improve the corrosion resistance and antimicrobial properties.Dip-coating technique was used to coat Zn HA-Zeo/PCL on the Mg substrate at room temperature.The samples were subjected to field emission scanning electron microscopy(FESEM),X-ray diffraction(XRD),Fourier transform infrared(FTIR),energy dispersive X-ray spectroscopy(EDX)and antimicrobial potential.Results demonstrated that composite coatings consist of HA,scholzite,zeolite,and PCL phases.EDX spectra indicated the presence of calcium(Ca),silicon(Si),aluminum(Al),zinc(Zn),phosphorus(P)and oxygen(O).The composite surface appeared in spherical-like microstructure on coating with thickness ranging 226-260μm.Zinc-doped HA-Zeo composite coating had a high corrosion resistance and provided sufficient protection to the Mg surface against galvanic corrosion.Doped Zn HA-Zeo coating samples exhibited superior disc inhibition by confirming antimicrobial activity against the E.coli as compared to HA-Zeo sample.Altogether these results showed that the Zn HA-Zeo coatings not only improved the corrosion resistance,but also enhanced the antimicrobial property and hence they can be used as suitable candidates for implant applications.
基金National Natural Science Foundation of China(52174315)Youth Scholars Promotion Plan of North China University of Science and Technology(QNTJ202304)。
文摘A combined process of molten salt electro-deoxidation and vacuum hot-pressing sintering was proposed to prepare AlCrFeNiTi_(x) high-entropy alloy(HEA)-TiN ceramic coating composites on low-carbon steel surfaces,where nitrides were introduced from BN isolater between graphite mold and HEA powders.The effect of Ti content on the microstructure,ultimate tensile strength,hardness,and wear resistance of the composites was investigated,and the bonding mechanism was elucidated.Results demonstrate that the composites have excellent hardness and wear resistance.The hardness of composites is significantly increased with the increase in Ti content.The extremely high wear resistance is attributed to the extremely high melting point and high thermal hardness of TiN,which can effectively prevent oxidation deformation of the worn surface.
基金supported by the National Key Technology Research and Development Program of the Ministry of Science and Technology of China(Grant No.2011BAE12B03)the National Natural Science Foundation of China(Grant No.11372110)
文摘TiCx-NiTi2/Ti cermet composite coatings C1 and C2 with gradient TiCx reinforcements were prepared on TC4 titanium alloy by laser cladding method.The microstructure and phase compositions were analyzed by means of scanning electron microscopy(SEM),energy-dispersive spectroscopy(EDS)and X-ray diffraction(XRD)meter.The TiCx exhibited a dendritic microstructure,and homogeneously dispersed in the Ti-based matrix where NiTi2 was embedded.With increasing ingredient supercooling,temperature gradient and cooling temperature,the dendrites displayed a finer morphology with longer primary trunks and intensified side branches in the dilution zone.But the smoothed,coarse columnar ones became dominant in the upper clad layer due to the repeated energy input during multi-track cladding.The Vickers microhardness presented a linear change trend through the cross-sections,which well confirmed the gradient distribution of TiCx.With more TiCx,C1 presented higher hardness than C2.