The contribution of anthropogenic mineral aerosol dust has been of interest to understand the impact of dust aerosols on climate, and the health of workers occupational exposure. Several studies have been investigated...The contribution of anthropogenic mineral aerosol dust has been of interest to understand the impact of dust aerosols on climate, and the health of workers occupational exposure. Several studies have been investigated the physical and chemical properties mainly in particulate matter. However, the characterizations have not extended diameters below to 1.0 μm. In this study, it described chemical composition and shape measurements of individual aerosol particles with 50% cut-off diameters less than 1.1 μm emitted at ceramic-tile manufacturing. Four emission sites of process were selected, and their samples were collected using a cascade-impactor, investigated using X-ray diffraction, energy dispersive X-ray spectroscopy, and digital image processing, where the data were analysed applying a combination of principal component and cluster analysis. Particles of tectosilicate (quartz, zeolite), phyllosilicate (illite, montmorillonite), and inosilicate (calcium silicate) were founded in all sampling sites; also, silicates mixed with transition metals oxides used as pigments (e.g., Fe, Ti, Co, Ni, Zn and Mo). Silicates were granulated and flat crystals with a transparent, translucent appearance; otherwise, the mixture had flake shapes and opaque appearance. Analyses of multivariate data showed that the process stages emissions were related with specific composition and shape suggesting the use three measurements related (1) the internal axis, (2) roundness and (3) roughness to isolate particles shapes, and the presence of transition metals oxides as emissions tracer of the ceramic industry.展开更多
文摘The contribution of anthropogenic mineral aerosol dust has been of interest to understand the impact of dust aerosols on climate, and the health of workers occupational exposure. Several studies have been investigated the physical and chemical properties mainly in particulate matter. However, the characterizations have not extended diameters below to 1.0 μm. In this study, it described chemical composition and shape measurements of individual aerosol particles with 50% cut-off diameters less than 1.1 μm emitted at ceramic-tile manufacturing. Four emission sites of process were selected, and their samples were collected using a cascade-impactor, investigated using X-ray diffraction, energy dispersive X-ray spectroscopy, and digital image processing, where the data were analysed applying a combination of principal component and cluster analysis. Particles of tectosilicate (quartz, zeolite), phyllosilicate (illite, montmorillonite), and inosilicate (calcium silicate) were founded in all sampling sites; also, silicates mixed with transition metals oxides used as pigments (e.g., Fe, Ti, Co, Ni, Zn and Mo). Silicates were granulated and flat crystals with a transparent, translucent appearance; otherwise, the mixture had flake shapes and opaque appearance. Analyses of multivariate data showed that the process stages emissions were related with specific composition and shape suggesting the use three measurements related (1) the internal axis, (2) roundness and (3) roughness to isolate particles shapes, and the presence of transition metals oxides as emissions tracer of the ceramic industry.