为评价废碱性干电池暴露于环境中可能产生的生态危害和环境风险,采用理化分析结合生物监测的方法对市售名牌无汞废碱性干电池的理化特征及其生物毒性进行了研究。结果表明:废碱性干电池成分较为复杂,主要含有Mn、Zn、K等素,同时富含Cu...为评价废碱性干电池暴露于环境中可能产生的生态危害和环境风险,采用理化分析结合生物监测的方法对市售名牌无汞废碱性干电池的理化特征及其生物毒性进行了研究。结果表明:废碱性干电池成分较为复杂,主要含有Mn、Zn、K等素,同时富含Cu、Hg、Cr、V、Ni等多种有害重金属。电池浸出液有较高的p H(12.53),同时富含多种重金属离子,但水浸条件下大都有非常低溶出率。电池浸出液对隆线溞有较强的急性毒性,其安全排放浓度仅为0.21 m L·L-1;调节p H至中性条件下,虽能显著降低浸出液的急性生物毒性,但仍表现出较强的急性毒性。综合分析表明废碱性干电池一旦暴露于环境中将造成显著的环境污染和生态风险。展开更多
文摘为评价废碱性干电池暴露于环境中可能产生的生态危害和环境风险,采用理化分析结合生物监测的方法对市售名牌无汞废碱性干电池的理化特征及其生物毒性进行了研究。结果表明:废碱性干电池成分较为复杂,主要含有Mn、Zn、K等素,同时富含Cu、Hg、Cr、V、Ni等多种有害重金属。电池浸出液有较高的p H(12.53),同时富含多种重金属离子,但水浸条件下大都有非常低溶出率。电池浸出液对隆线溞有较强的急性毒性,其安全排放浓度仅为0.21 m L·L-1;调节p H至中性条件下,虽能显著降低浸出液的急性生物毒性,但仍表现出较强的急性毒性。综合分析表明废碱性干电池一旦暴露于环境中将造成显著的环境污染和生态风险。