Let an, n≥ 1 be a sequence of independent standard normal random variables. Consider the randomtrigonometric polynomial Tn(θ)=∑^n_i=1 aj cos(j θ), 0≤θ≤π and let Nn be the number of real roots of Tn(θ)in...Let an, n≥ 1 be a sequence of independent standard normal random variables. Consider the randomtrigonometric polynomial Tn(θ)=∑^n_i=1 aj cos(j θ), 0≤θ≤π and let Nn be the number of real roots of Tn(θ)in (0, 2π). In this paper it is proved that limn→∞ Var(Nn)/n=co,where 0 〈 co〈 ∞.展开更多
基金supported by National Natural Science Foundation of China (GrantNos. 10671176 and 11071213)Zhejiang Provincial Natural Science Foundation of China (Grant No. R6090034)+1 种基金Doctoral Programs Foundation of Ministry of Education of China (Grant No. J20110031)Competitive Earmarked Research Grant of Research Grants Council (Grant No. 602608)
文摘Let an, n≥ 1 be a sequence of independent standard normal random variables. Consider the randomtrigonometric polynomial Tn(θ)=∑^n_i=1 aj cos(j θ), 0≤θ≤π and let Nn be the number of real roots of Tn(θ)in (0, 2π). In this paper it is proved that limn→∞ Var(Nn)/n=co,where 0 〈 co〈 ∞.