针对一类中立型随机时滞系统,本文利用随机Lyapunov稳定理论和Ito微分法则,研究了其非脆弱镇定和H∞控制问题。在控制器增益分别具有加法式摄动和乘法式摄动的情形下,推导出系统随机鲁棒可镇定和鲁棒H∞控制器存在的充分条件。通过求解...针对一类中立型随机时滞系统,本文利用随机Lyapunov稳定理论和Ito微分法则,研究了其非脆弱镇定和H∞控制问题。在控制器增益分别具有加法式摄动和乘法式摄动的情形下,推导出系统随机鲁棒可镇定和鲁棒H∞控制器存在的充分条件。通过求解线性矩阵不等式(linear matrix ine qualities,LMI),设计了中立型随机时滞系统的记忆状态反馈非脆弱控制器,并给出控制器的存在条件是时滞依赖。数值仿真结果表明,此控制器使中立型随机时滞系统的鲁棒性是随机稳定的,且具有干扰衰减系数γ∞。展开更多
基金Supported by the Natural Science Foundation of Henan Province of China(10230041024)the Natural Science Foundation of Henan Education Department of China(2008A110015)
文摘针对一类中立型随机时滞系统,本文利用随机Lyapunov稳定理论和Ito微分法则,研究了其非脆弱镇定和H∞控制问题。在控制器增益分别具有加法式摄动和乘法式摄动的情形下,推导出系统随机鲁棒可镇定和鲁棒H∞控制器存在的充分条件。通过求解线性矩阵不等式(linear matrix ine qualities,LMI),设计了中立型随机时滞系统的记忆状态反馈非脆弱控制器,并给出控制器的存在条件是时滞依赖。数值仿真结果表明,此控制器使中立型随机时滞系统的鲁棒性是随机稳定的,且具有干扰衰减系数γ∞。