We study large population stochastic dynamic games where the so-called Nash certainty equivalence based control laws are implemented by the individual players. We first show a martingale property for the limiting cont...We study large population stochastic dynamic games where the so-called Nash certainty equivalence based control laws are implemented by the individual players. We first show a martingale property for the limiting control problem of a single agent and then perform averaging across the population; this procedure leads to a constant value for the martingale which shows an invariance property of the population behavior induced by the Nash strategies.展开更多
This paper is concerned with a fully coupled forward-backward stochastic optimal control problem where the controlled system is driven by Levy process, while the forward state is constrained in a convex set at the ter...This paper is concerned with a fully coupled forward-backward stochastic optimal control problem where the controlled system is driven by Levy process, while the forward state is constrained in a convex set at the terminal time. The authors use an equivalent backward formulation to deal with the terminal state constraint, and then obtain a stochastic maximum principle by Ekeland's variational principle. Finally, the result is applied to the utility optimization problem in a financial market.展开更多
文摘We study large population stochastic dynamic games where the so-called Nash certainty equivalence based control laws are implemented by the individual players. We first show a martingale property for the limiting control problem of a single agent and then perform averaging across the population; this procedure leads to a constant value for the martingale which shows an invariance property of the population behavior induced by the Nash strategies.
基金supported by the National Science Fundation of China under Grant No.11271007the National Social Science Fund Project of China under Grant No.17BGL058Humanity and Social Science Research Foundation of Ministry of Education of China under Grant No.15YJA790051
文摘This paper is concerned with a fully coupled forward-backward stochastic optimal control problem where the controlled system is driven by Levy process, while the forward state is constrained in a convex set at the terminal time. The authors use an equivalent backward formulation to deal with the terminal state constraint, and then obtain a stochastic maximum principle by Ekeland's variational principle. Finally, the result is applied to the utility optimization problem in a financial market.