Sequential addition of L-lactide(LA) followed by ε-caprolactone(CL), and simultaneous addition of both monomers, afforded random LA/CL copolymers in the presence of lanthanide aryloxides under mild conditions. Transe...Sequential addition of L-lactide(LA) followed by ε-caprolactone(CL), and simultaneous addition of both monomers, afforded random LA/CL copolymers in the presence of lanthanide aryloxides under mild conditions. Transesterification was proved to play a predominant role in random copolymer formation. Moreover, treatment of poly(L-lactide) with ε-CL led to random copolymer formation, which provides a new strategy not only to prepare random LA/CL copolymers, but also to directly modify PLLA.展开更多
基金supported by the National Natural Science Foundation of China (21402138, 21674070)the Major Research Project of the Natural Science of the Jiangsu Higher Education Institutions (14KJA150007)+1 种基金the Project of Scientific and Technologic Infrastructure of Suzhou (SZS201708)a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)
文摘Sequential addition of L-lactide(LA) followed by ε-caprolactone(CL), and simultaneous addition of both monomers, afforded random LA/CL copolymers in the presence of lanthanide aryloxides under mild conditions. Transesterification was proved to play a predominant role in random copolymer formation. Moreover, treatment of poly(L-lactide) with ε-CL led to random copolymer formation, which provides a new strategy not only to prepare random LA/CL copolymers, but also to directly modify PLLA.