The authors prove a sufficient stochastic maximum principle for the optimal control of a forward-backward Markov regime switching jump diffusion system and show its connection to dynamic programming principle. The res...The authors prove a sufficient stochastic maximum principle for the optimal control of a forward-backward Markov regime switching jump diffusion system and show its connection to dynamic programming principle. The result is applied to a cash flow valuation problem with terminal wealth constraint in a financial market. An explicit optimal strategy is obtained in this example.展开更多
This paper is devoted to the investigation of stability for a class of coupled impulsive Markovian jump reaction-diffusion systems on networks(CIMJRDSNs). By using graph theory, a systematic method is provided to cons...This paper is devoted to the investigation of stability for a class of coupled impulsive Markovian jump reaction-diffusion systems on networks(CIMJRDSNs). By using graph theory, a systematic method is provided to construct global Lyapunov functions for the CIMJRDSNs. Based on Lyapunov functions and stochastic analysis method, some novel stability principles associated with the topology property of the networks are established.展开更多
基金supported by the National Natural Science Foundation of China(No.61573217)the 111 Project(No.B12023)the National High-level Personnel of Special Support Program and the Chang Jiang Scholar Program of the Ministry of Education of China
文摘The authors prove a sufficient stochastic maximum principle for the optimal control of a forward-backward Markov regime switching jump diffusion system and show its connection to dynamic programming principle. The result is applied to a cash flow valuation problem with terminal wealth constraint in a financial market. An explicit optimal strategy is obtained in this example.
基金supported by the National Natural Science Foundation of China under Grant Nos.61473097,11301090the State Key Program of Natural Science Foundation of China under Grant No.U1533202+2 种基金Shandong Independent Innovation and Achievements Transformation Fund under Grant No.2014CGZH1101Civil Aviation Administration of China under Grant No.MHRD20150104Guangxi Natural Science Foundation under Grant No.2016JJA110005
文摘This paper is devoted to the investigation of stability for a class of coupled impulsive Markovian jump reaction-diffusion systems on networks(CIMJRDSNs). By using graph theory, a systematic method is provided to construct global Lyapunov functions for the CIMJRDSNs. Based on Lyapunov functions and stochastic analysis method, some novel stability principles associated with the topology property of the networks are established.