The research on spatial epidemic models is a topic of considerable recent interest. In another hand, the advances in computer technology have stimulated the development of stochastic models. Metapopulation models are ...The research on spatial epidemic models is a topic of considerable recent interest. In another hand, the advances in computer technology have stimulated the development of stochastic models. Metapopulation models are spatial designs that involve movements of individuals between distinct subpopulations. The purpose of the present work has been to develop stochastic models in order to study the transmission dynamics and control of infectious diseases in metapopulations. The authors studied Susceptible-Infected-Susceptible (SIS) and Susceptible-lnfected-Recovered (SIR) epidemic schemes, using the Gillespie algorithm, Computational numerical simulations were carried in order to explore the models. The results obtained show how the dynamics of transmission and the application of control measures within each subpopulation may affect all subpopulations of the system. They also show how the distribution of control measures among subpopulations affects the efficacy of these strategies. The dynamics of the stochastic models developed in the current study follow the trends observed in the classic deterministic designs. Also, the present models exhibit fluctuating behavior. This work highlights the importance of the spatial distribution of the population in spread and control of infectious diseases. In addition, it shows how chance could play an important role in these scenarios.展开更多
The quark potential model is extended to include the sea quark excitation using the random phase approximation. The effective quark interaction preserves the important QCD properties — chiral symmetry and confinement...The quark potential model is extended to include the sea quark excitation using the random phase approximation. The effective quark interaction preserves the important QCD properties — chiral symmetry and confinement simultaneously. A primary qualitative analysis shows that the π meson as a well-known typical Goldstone boson and the other mesons made up of valence quark pair such as the ρ meson can also be described in this extended quark potential model.展开更多
Based on a membrane-bulk coupling cell model proposed by Gomez-Marin et al. [ Phys. Rev. Lett. 98 (2007) 168303], the cooperative effects of noise and coupling on the stochastic dynamical behavior are investigated. ...Based on a membrane-bulk coupling cell model proposed by Gomez-Marin et al. [ Phys. Rev. Lett. 98 (2007) 168303], the cooperative effects of noise and coupling on the stochastic dynamical behavior are investigated. For parameters in a certain region, the oscillation can be induced by the cooperative effect of noise and coupling. Whether considering the coupling or not, corresponding coherence resonance phenomena are observed. Furthermore, the effects of two coupling parameters, cell size L and coupling intensity k, on the noise-induced oscillation of membranes are studied. Contrary effects of noise are found in and out of the deterministic oscillatory regions.展开更多
This paper provides a mathematically rigorous foundation for self-consistent mean field theory of the polymeric physics. We study a new model for dynamics of mono-polymer systems. Every polymer is regarded as a string...This paper provides a mathematically rigorous foundation for self-consistent mean field theory of the polymeric physics. We study a new model for dynamics of mono-polymer systems. Every polymer is regarded as a string of points which are moving randomly as Brownian motions and under elastic forces. Every two points on the same string or on two different strings also interact under a pairwise potential V. The dynamics of the system is described by a system of N coupled stochastic partial differential equations (SPDEs). We show that the mean field limit as N -+ c~ of the system is a self-consistent McKean-Vlasov type equation, under suitable assumptions on the initial and boundary conditions and regularity of V. We also prove that both the SPDE system of the polymers and the mean field limit equation are well-posed.展开更多
文摘The research on spatial epidemic models is a topic of considerable recent interest. In another hand, the advances in computer technology have stimulated the development of stochastic models. Metapopulation models are spatial designs that involve movements of individuals between distinct subpopulations. The purpose of the present work has been to develop stochastic models in order to study the transmission dynamics and control of infectious diseases in metapopulations. The authors studied Susceptible-Infected-Susceptible (SIS) and Susceptible-lnfected-Recovered (SIR) epidemic schemes, using the Gillespie algorithm, Computational numerical simulations were carried in order to explore the models. The results obtained show how the dynamics of transmission and the application of control measures within each subpopulation may affect all subpopulations of the system. They also show how the distribution of control measures among subpopulations affects the efficacy of these strategies. The dynamics of the stochastic models developed in the current study follow the trends observed in the classic deterministic designs. Also, the present models exhibit fluctuating behavior. This work highlights the importance of the spatial distribution of the population in spread and control of infectious diseases. In addition, it shows how chance could play an important role in these scenarios.
文摘The quark potential model is extended to include the sea quark excitation using the random phase approximation. The effective quark interaction preserves the important QCD properties — chiral symmetry and confinement simultaneously. A primary qualitative analysis shows that the π meson as a well-known typical Goldstone boson and the other mesons made up of valence quark pair such as the ρ meson can also be described in this extended quark potential model.
基金supported by the National Natural Science Foundation of China under Grant No.10575041
文摘Based on a membrane-bulk coupling cell model proposed by Gomez-Marin et al. [ Phys. Rev. Lett. 98 (2007) 168303], the cooperative effects of noise and coupling on the stochastic dynamical behavior are investigated. For parameters in a certain region, the oscillation can be induced by the cooperative effect of noise and coupling. Whether considering the coupling or not, corresponding coherence resonance phenomena are observed. Furthermore, the effects of two coupling parameters, cell size L and coupling intensity k, on the noise-induced oscillation of membranes are studied. Contrary effects of noise are found in and out of the deterministic oscillatory regions.
基金supported by National Natural Science Foundation of China(Grant No.91130005)the US Army Research Office(Grant No.W911NF-11-1-0101)
文摘This paper provides a mathematically rigorous foundation for self-consistent mean field theory of the polymeric physics. We study a new model for dynamics of mono-polymer systems. Every polymer is regarded as a string of points which are moving randomly as Brownian motions and under elastic forces. Every two points on the same string or on two different strings also interact under a pairwise potential V. The dynamics of the system is described by a system of N coupled stochastic partial differential equations (SPDEs). We show that the mean field limit as N -+ c~ of the system is a self-consistent McKean-Vlasov type equation, under suitable assumptions on the initial and boundary conditions and regularity of V. We also prove that both the SPDE system of the polymers and the mean field limit equation are well-posed.