In this paper a novel approach for the analysis of non stationary response of aircraft landing gear taxiing over an unevenness runway at variable velocity is explored, which is based on the power spectral density met...In this paper a novel approach for the analysis of non stationary response of aircraft landing gear taxiing over an unevenness runway at variable velocity is explored, which is based on the power spectral density method. A concerned analytical landing gear model for simulating actual aircraft taxiing is formulated. The equivalent linearization results obtained by probabilistic method are inducted to treat landing gear non linear parameters such as shock absorber air spring force, hydraulic damping and Coulomb friction, tire stiffness and damping. The power spectral density for non stationary analysis is obtained via variable substitution and then Fourier transform. A representative response quantity, the overload of the aircraft gravity center, is analyzed. The frequency response function of the gravity overload is derived. The case study demonstrates that under the same reached velocity the root mean square of the gravity acceleration response from constant acceleration taxiing is smaller than that from constant velocity taxiing and the root mean square of the gravity acceleration response from lower acceleration taxiing is greater than that from higher acceleration.展开更多
The random wave load is applied to dynamic response analysis of circular caisson breakwater. The motion process of circular caisson breakwater is classified as rotation motion mode and rotation-and-sliding motion mode...The random wave load is applied to dynamic response analysis of circular caisson breakwater. The motion process of circular caisson breakwater is classified as rotation motion mode and rotation-and-sliding motion mode. The dynamic model system composed of damper-antislider to control the lateral sliding is introduced, and corresponding dynamic equations of two motion modes are established. The formulas to calculate added mass and new conversion relation of the unit rota- tional stiffness coefficient are put forward according to the characteristic of the circular caisson breakwater. An engineering case is calculated by a program compiled in Fortran language using proposed dynamic model and method. The validity of the model is calibrated.展开更多
Random vertical track irregularities are one of essential vibration sources in bridge, track structure and high-speed train systems. The common model of such irregularities is a stationary and ergodic Gaussian process...Random vertical track irregularities are one of essential vibration sources in bridge, track structure and high-speed train systems. The common model of such irregularities is a stationary and ergodic Gaussian process. The study presents the results of numerical dynamic analysis of advanced virtual models of composite BTT (bridge/ballasted track structure/high-speed train) systems. The analysis has been conducted for a series of types of single-span simply-supported railway composite (steel-concrete) bridges, with a symmetric platform, located on lines with ballasted track structure adapted for high-speed trains. The bridges are designed according to Polish bridge standards. A new methodology of numerical modeling and simulation of dynamic processes in BTT systems has been applied. The methodology takes into consideration viscoelastic suspensions of rail-vehicles, nonlinear Hertz wheel-rail contact stiffness and one-side wheel-rail contact, physically nonlinear elastic-damping properties of the track structure, random vertical track irregularities, approach slabs and other features. Computer algorithms of FE (finite element) modeling and simulation were programmed in Delphi. Both static and dynamic numerical investigations of the bridges forming the series of types have been carried out. It has been proved that in the case of common structural solutions of bridges and ballasted track structures, it is necessary to put certain limitations on operating speeds, macadam ballast and vertical track roughness.展开更多
文摘In this paper a novel approach for the analysis of non stationary response of aircraft landing gear taxiing over an unevenness runway at variable velocity is explored, which is based on the power spectral density method. A concerned analytical landing gear model for simulating actual aircraft taxiing is formulated. The equivalent linearization results obtained by probabilistic method are inducted to treat landing gear non linear parameters such as shock absorber air spring force, hydraulic damping and Coulomb friction, tire stiffness and damping. The power spectral density for non stationary analysis is obtained via variable substitution and then Fourier transform. A representative response quantity, the overload of the aircraft gravity center, is analyzed. The frequency response function of the gravity overload is derived. The case study demonstrates that under the same reached velocity the root mean square of the gravity acceleration response from constant acceleration taxiing is smaller than that from constant velocity taxiing and the root mean square of the gravity acceleration response from lower acceleration taxiing is greater than that from higher acceleration.
基金Supported by National Natural Science Foundation of China (No. 59909005)Doctor Foundation of Education Ministry of China(No. 20020056030)
文摘The random wave load is applied to dynamic response analysis of circular caisson breakwater. The motion process of circular caisson breakwater is classified as rotation motion mode and rotation-and-sliding motion mode. The dynamic model system composed of damper-antislider to control the lateral sliding is introduced, and corresponding dynamic equations of two motion modes are established. The formulas to calculate added mass and new conversion relation of the unit rota- tional stiffness coefficient are put forward according to the characteristic of the circular caisson breakwater. An engineering case is calculated by a program compiled in Fortran language using proposed dynamic model and method. The validity of the model is calibrated.
文摘Random vertical track irregularities are one of essential vibration sources in bridge, track structure and high-speed train systems. The common model of such irregularities is a stationary and ergodic Gaussian process. The study presents the results of numerical dynamic analysis of advanced virtual models of composite BTT (bridge/ballasted track structure/high-speed train) systems. The analysis has been conducted for a series of types of single-span simply-supported railway composite (steel-concrete) bridges, with a symmetric platform, located on lines with ballasted track structure adapted for high-speed trains. The bridges are designed according to Polish bridge standards. A new methodology of numerical modeling and simulation of dynamic processes in BTT systems has been applied. The methodology takes into consideration viscoelastic suspensions of rail-vehicles, nonlinear Hertz wheel-rail contact stiffness and one-side wheel-rail contact, physically nonlinear elastic-damping properties of the track structure, random vertical track irregularities, approach slabs and other features. Computer algorithms of FE (finite element) modeling and simulation were programmed in Delphi. Both static and dynamic numerical investigations of the bridges forming the series of types have been carried out. It has been proved that in the case of common structural solutions of bridges and ballasted track structures, it is necessary to put certain limitations on operating speeds, macadam ballast and vertical track roughness.