期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
大子样岩土随机参数统计方法 被引量:51
1
作者 苏永华 何满潮 孙晓明 《岩土工程学报》 EI CAS CSCD 北大核心 2001年第1期117-119,共3页
关键词 岩土工程 可靠性 随机参数统计
下载PDF
一类物资多目标规划的算法研究和评价模型 被引量:1
2
作者 卢方利 孙德宝 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2001年第9期43-45,共3页
提出了一种多目标资源分配的启发式搜索算法和评价模型 .通过初始的若干种物资在不同站点之间的几种可能的调配方案 ,确定出不同的初始搜索矩阵 .在此基础上进行搜索可以很大程度地减少全局最优解的范围 .结果表明 ,利用提出的基于随机... 提出了一种多目标资源分配的启发式搜索算法和评价模型 .通过初始的若干种物资在不同站点之间的几种可能的调配方案 ,确定出不同的初始搜索矩阵 .在此基础上进行搜索可以很大程度地减少全局最优解的范围 .结果表明 ,利用提出的基于随机参数统计原理的评价模型便能很容易得出合适的方案解 . 展开更多
关键词 多目标规划 启发式搜索 全局最优 随机参数统计 物资分配 搜索矩阵
下载PDF
Prestack seismic stochastic inversion based on statistical characteristic parameters 被引量:3
3
作者 Wang Bao-Li Lin Ying +1 位作者 Zhang Guang-Zhi Yin Xing-Yao 《Applied Geophysics》 SCIE CSCD 2021年第1期63-74,129,共13页
In the conventional stochastic inversion method,the spatial structure information of underground strata is usually characterized by variograms.However,effectively characterizing the heterogeneity of complex strata is ... In the conventional stochastic inversion method,the spatial structure information of underground strata is usually characterized by variograms.However,effectively characterizing the heterogeneity of complex strata is difficult.In this paper,multiple parameters are used to fully explore the underground formation information in the known seismic reflection and well log data.The spatial structure characteristics of complex underground reservoirs are described more comprehensively using multiple statistical characteristic parameters.We propose a prestack seismic stochastic inversion method based on prior information on statistical characteristic parameters.According to the random medium theory,this method obtains several statistical characteristic parameters from known seismic and logging data,constructs a prior information model that meets the spatial structure characteristics of the underground strata,and integrates multiparameter constraints into the likelihood function to construct the objective function.The very fast quantum annealing algorithm is used to optimize and update the objective function to obtain the fi nal inversion result.The model test shows that compared with the traditional prior information model construction method,the prior information model based on multiple parameters in this paper contains more detailed stratigraphic information,which can better describe complex underground reservoirs.A real data analysis shows that the stochastic inversion method proposed in this paper can effectively predict the geophysical characteristics of complex underground reservoirs and has a high resolution. 展开更多
关键词 prior information random medium theory statistical characteristic parameters stochastic inversion very fast quantum annealing
下载PDF
Extremes of Shepp statistics for fractional Brownian motion 被引量:3
4
作者 TAN ZhongQuan YANG Yang 《Science China Mathematics》 SCIE CSCD 2015年第8期1779-1794,共16页
Define the incremental fractional Brownian field with parameter H ∈ (0, 1) by ZH(τ, s) = BH(s-+τ) - BH(S), where BH(s) is a fractional Brownian motion with Hurst parameter H ∈ (0, 1). We firstly deriv... Define the incremental fractional Brownian field with parameter H ∈ (0, 1) by ZH(τ, s) = BH(s-+τ) - BH(S), where BH(s) is a fractional Brownian motion with Hurst parameter H ∈ (0, 1). We firstly derive the exact tail asymptoties for the maximum MH*(T) = max(τ,s)∈[a,b]×[0,T] ZH(τ, s)/τH of the standardised fractional Brownian motion field, with any fixed 0 〈 a 〈 b 〈 ∞ and T 〉 0; and we, furthermore, extend the obtained result to the ease that T is a positive random variable independent of {BH(s), s ≥ 0}. As a by-product, we obtain the Gumbel limit law for MH*r(T) as T →∞. 展开更多
关键词 extremes Shepp statistics fractional Brownian motion exact tail asymptotic Gumbel limit law
原文传递
CONTINUOUS AUXILIARY COVARIATE IN ADDITIVE HAZARDS REGRESSION FOR SURVIVAL DATA 被引量:3
5
作者 SHI Xiaoping LIU Yanyan WU Yuanshan 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2014年第6期1247-1262,共16页
This paper considers the additive hazards iliary covariate information to improve the efficiency regression analysis by utilizing continuous aux- of the statistical inference when the primary covariate is ascertained ... This paper considers the additive hazards iliary covariate information to improve the efficiency regression analysis by utilizing continuous aux- of the statistical inference when the primary covariate is ascertained only for a randomly selected subsample. The authors construct a martingale based estimating equation for the regression parameter and establish the asymptotic consistency and normality of the resultant estimators. Simulation study shows that the proposed method can greatly improve the efficiency compared with the estimator which discards the auxiliary covariate information in a variety of settings. A real example is also provided as an illustration. 展开更多
关键词 Additive hazards regression continuous auxiliary covariate estimating equation kernelsmoothing survival analysis.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部