Based on the Eigen and Crow-Kimura models with a single-peak fitness landscape, we propose the fitness values of all sequence types to be Gausslan distributed random variables to incorporate the effects of the fluctua...Based on the Eigen and Crow-Kimura models with a single-peak fitness landscape, we propose the fitness values of all sequence types to be Gausslan distributed random variables to incorporate the effects of the fluctuations of the fitness landscapes (noise of environments) and investigate the concentration distribution and error threshold of quasispecies by performing an ensemble average within this theoretical framework. We find that a small fluctuation of the fitness landscape causes only a slight change in the concentration distribution and error threshold, which implies that the error threshold is stable against small perturbations. However, for a sizable fluctuation, quite different from the previous deterministic models, our statistical results show that the transition from quasi-species to error catastrophe is not so sharp, indicating that the error threshold is located within a certain range and has a shift toward a larger value. Our results are qualitatively in agreement with the experimental data and provide a new implication for antiviral strategies.展开更多
The paper is concerned with optimal control of backward stochastic differentiM equation (BSDE) driven by Teugel's martingales and an independent multi-dimensional Brownian motion, where Teugel's martingales are a ...The paper is concerned with optimal control of backward stochastic differentiM equation (BSDE) driven by Teugel's martingales and an independent multi-dimensional Brownian motion, where Teugel's martingales are a family of pairwise strongly orthonormal martingales associated with L6vy processes (see e.g., Nualart and Schoutens' paper in 2000). We derive the necessary and sufficient conditions for the existence of the optimal control by means of convex variation methods and duality techniques. As an application, the optimal control problem of linear backward stochastic differential equation with a quadratic cost criteria (or backward linear-quadratic problem, or BLQ problem for short) is discussed and characterized by a stochastic Hamilton system.展开更多
In this paper,we consider an optimal control problem with state constraints,where the control system is described by a mean-field forward-backward stochastic differential equation(MFFBSDE,for short)and the admissible ...In this paper,we consider an optimal control problem with state constraints,where the control system is described by a mean-field forward-backward stochastic differential equation(MFFBSDE,for short)and the admissible control is mean-field type.Making full use of the backward stochastic differential equation theory,we transform the original control system into an equivalent backward form,i.e.,the equations in the control system are all backward.In addition,Ekeland's variational principle helps us deal with the state constraints so that we get a stochastic maximum principle which characterizes the necessary condition of the optimal control.We also study a stochastic linear quadratic control problem with state constraints.展开更多
基金The project supported by National Natural Science Foundation of China under Grant Nos. 10475008, 10675170, and 10435020, and the Department of Nuclear Physics of China Institute of Atomic Energy under Grant Nos. 11SZZ-200501 and 11SZZ-200601
文摘Based on the Eigen and Crow-Kimura models with a single-peak fitness landscape, we propose the fitness values of all sequence types to be Gausslan distributed random variables to incorporate the effects of the fluctuations of the fitness landscapes (noise of environments) and investigate the concentration distribution and error threshold of quasispecies by performing an ensemble average within this theoretical framework. We find that a small fluctuation of the fitness landscape causes only a slight change in the concentration distribution and error threshold, which implies that the error threshold is stable against small perturbations. However, for a sizable fluctuation, quite different from the previous deterministic models, our statistical results show that the transition from quasi-species to error catastrophe is not so sharp, indicating that the error threshold is located within a certain range and has a shift toward a larger value. Our results are qualitatively in agreement with the experimental data and provide a new implication for antiviral strategies.
基金supported by National Natural Science Foundation of China (Grant No. 11101090, 11101140, 10771122)Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20090071120002)+2 种基金Innovation Team Foundation of the Department of Education of Zhejiang Province (Grant No. T200924)Natural Science Foundation of Zhejiang Province (Grant No. Y6110775, Y6110789)Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry
文摘The paper is concerned with optimal control of backward stochastic differentiM equation (BSDE) driven by Teugel's martingales and an independent multi-dimensional Brownian motion, where Teugel's martingales are a family of pairwise strongly orthonormal martingales associated with L6vy processes (see e.g., Nualart and Schoutens' paper in 2000). We derive the necessary and sufficient conditions for the existence of the optimal control by means of convex variation methods and duality techniques. As an application, the optimal control problem of linear backward stochastic differential equation with a quadratic cost criteria (or backward linear-quadratic problem, or BLQ problem for short) is discussed and characterized by a stochastic Hamilton system.
基金supported by National Natural Science Foundation of China(Grant No.11401091)Postdoctoral Scientific Research Project of Jilin Province(Grant No.RB201357)+2 种基金the Fundamental Research Funds for the Central Universities(Grant No.14QNJJ002)China Postdoctoral Science Foundation(Grant No.2014M551152)the China Scholarship Council
文摘In this paper,we consider an optimal control problem with state constraints,where the control system is described by a mean-field forward-backward stochastic differential equation(MFFBSDE,for short)and the admissible control is mean-field type.Making full use of the backward stochastic differential equation theory,we transform the original control system into an equivalent backward form,i.e.,the equations in the control system are all backward.In addition,Ekeland's variational principle helps us deal with the state constraints so that we get a stochastic maximum principle which characterizes the necessary condition of the optimal control.We also study a stochastic linear quadratic control problem with state constraints.