Suppose {Xi, i≥1} and {Yi, i≥1} are two independent sequences with distribution functions FX(x) and FY(x), respectively. Zi is the combination of Xi and Yi with a probability pn for each i with 1≤i≤n. The extreme ...Suppose {Xi, i≥1} and {Yi, i≥1} are two independent sequences with distribution functions FX(x) and FY(x), respectively. Zi is the combination of Xi and Yi with a probability pn for each i with 1≤i≤n. The extreme value distribution ,n GZ(x) of this particular triangular array of the i.i.d. random variables Z1, , Z2, ,…, Zn n n ,nis discussed. We found a new form of the extreme value distribution ΛA(ρx)Λ(x)(0<ρ <1), which is not max-stable. It occurs if FX(x) and FY(x) belong to the same MDA(Λ). GZ(x) does not exist as mixture forms of the different types of extreme value distributions.展开更多
This paper presents software reliability growth models(SRGMs) with change-point based on the stochastic differential equation(SDE).Although SRGMs based on SDE have been developed in a large scale software system,consi...This paper presents software reliability growth models(SRGMs) with change-point based on the stochastic differential equation(SDE).Although SRGMs based on SDE have been developed in a large scale software system,considering the variation of failure distribution in the existing models during testing time is limited.These SDE SRGMs assume that failures have the same distribution.However,in practice,the fault detection rate can be affected by some factors and may be changed at certain point as time proceeds.With respect to this issue,in this paper,SDE SRGMs with changepoint are proposed to precisely reflect the variations of the failure distribution.A real data set is used to evaluate the new models.The experimental results show that the proposed models have a fairly accurate prediction capability.展开更多
The paper is concerned with optimal control of backward stochastic differentiM equation (BSDE) driven by Teugel's martingales and an independent multi-dimensional Brownian motion, where Teugel's martingales are a ...The paper is concerned with optimal control of backward stochastic differentiM equation (BSDE) driven by Teugel's martingales and an independent multi-dimensional Brownian motion, where Teugel's martingales are a family of pairwise strongly orthonormal martingales associated with L6vy processes (see e.g., Nualart and Schoutens' paper in 2000). We derive the necessary and sufficient conditions for the existence of the optimal control by means of convex variation methods and duality techniques. As an application, the optimal control problem of linear backward stochastic differential equation with a quadratic cost criteria (or backward linear-quadratic problem, or BLQ problem for short) is discussed and characterized by a stochastic Hamilton system.展开更多
In this paper,we consider an optimal control problem with state constraints,where the control system is described by a mean-field forward-backward stochastic differential equation(MFFBSDE,for short)and the admissible ...In this paper,we consider an optimal control problem with state constraints,where the control system is described by a mean-field forward-backward stochastic differential equation(MFFBSDE,for short)and the admissible control is mean-field type.Making full use of the backward stochastic differential equation theory,we transform the original control system into an equivalent backward form,i.e.,the equations in the control system are all backward.In addition,Ekeland's variational principle helps us deal with the state constraints so that we get a stochastic maximum principle which characterizes the necessary condition of the optimal control.We also study a stochastic linear quadratic control problem with state constraints.展开更多
We study the existence and uniqueness of the solution to a forward-backward stochastic differential equation with subdifferential operator in the backward equation. This kind of equations includes, as a particular cas...We study the existence and uniqueness of the solution to a forward-backward stochastic differential equation with subdifferential operator in the backward equation. This kind of equations includes, as a particular case, multi-dimensional forward-backward stochastic differential equation where the backward equation is reflected on the boundary of a closed convex(time-independent) domain. Moreover, we give a probabilistic interpretation for the viscosity solution of a kind of quasilinear variational inequalities.展开更多
In this article, exact solutions of Wick-type stochastic Kudryashov–Sinelshchikov equation have been obtained by using improved Sub-equation method. We have used Hermite transform for transforming the Wick-type stoch...In this article, exact solutions of Wick-type stochastic Kudryashov–Sinelshchikov equation have been obtained by using improved Sub-equation method. We have used Hermite transform for transforming the Wick-type stochastic Kudryashov–Sinelshchikov equation to deterministic partial differential equation. Also we have applied inverse Hermite transform for obtaining a set of stochastic solutions in the white noise space.展开更多
文摘Suppose {Xi, i≥1} and {Yi, i≥1} are two independent sequences with distribution functions FX(x) and FY(x), respectively. Zi is the combination of Xi and Yi with a probability pn for each i with 1≤i≤n. The extreme value distribution ,n GZ(x) of this particular triangular array of the i.i.d. random variables Z1, , Z2, ,…, Zn n n ,nis discussed. We found a new form of the extreme value distribution ΛA(ρx)Λ(x)(0<ρ <1), which is not max-stable. It occurs if FX(x) and FY(x) belong to the same MDA(Λ). GZ(x) does not exist as mixture forms of the different types of extreme value distributions.
基金Supported by the International Science&Technology Cooperation Program of China(No.2010DFA14400)the National Natural Science Foundation of China(No.60503015)the National High Technology Research and Development Programme of China(No.2008AA01A201)
文摘This paper presents software reliability growth models(SRGMs) with change-point based on the stochastic differential equation(SDE).Although SRGMs based on SDE have been developed in a large scale software system,considering the variation of failure distribution in the existing models during testing time is limited.These SDE SRGMs assume that failures have the same distribution.However,in practice,the fault detection rate can be affected by some factors and may be changed at certain point as time proceeds.With respect to this issue,in this paper,SDE SRGMs with changepoint are proposed to precisely reflect the variations of the failure distribution.A real data set is used to evaluate the new models.The experimental results show that the proposed models have a fairly accurate prediction capability.
基金supported by National Natural Science Foundation of China (Grant No. 11101090, 11101140, 10771122)Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20090071120002)+2 种基金Innovation Team Foundation of the Department of Education of Zhejiang Province (Grant No. T200924)Natural Science Foundation of Zhejiang Province (Grant No. Y6110775, Y6110789)Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry
文摘The paper is concerned with optimal control of backward stochastic differentiM equation (BSDE) driven by Teugel's martingales and an independent multi-dimensional Brownian motion, where Teugel's martingales are a family of pairwise strongly orthonormal martingales associated with L6vy processes (see e.g., Nualart and Schoutens' paper in 2000). We derive the necessary and sufficient conditions for the existence of the optimal control by means of convex variation methods and duality techniques. As an application, the optimal control problem of linear backward stochastic differential equation with a quadratic cost criteria (or backward linear-quadratic problem, or BLQ problem for short) is discussed and characterized by a stochastic Hamilton system.
基金supported by National Natural Science Foundation of China(Grant No.11401091)Postdoctoral Scientific Research Project of Jilin Province(Grant No.RB201357)+2 种基金the Fundamental Research Funds for the Central Universities(Grant No.14QNJJ002)China Postdoctoral Science Foundation(Grant No.2014M551152)the China Scholarship Council
文摘In this paper,we consider an optimal control problem with state constraints,where the control system is described by a mean-field forward-backward stochastic differential equation(MFFBSDE,for short)and the admissible control is mean-field type.Making full use of the backward stochastic differential equation theory,we transform the original control system into an equivalent backward form,i.e.,the equations in the control system are all backward.In addition,Ekeland's variational principle helps us deal with the state constraints so that we get a stochastic maximum principle which characterizes the necessary condition of the optimal control.We also study a stochastic linear quadratic control problem with state constraints.
基金supported by Australian Research Council’s Discovery Projects Funding Scheme(Grant No.DP120100895)
文摘We study the existence and uniqueness of the solution to a forward-backward stochastic differential equation with subdifferential operator in the backward equation. This kind of equations includes, as a particular case, multi-dimensional forward-backward stochastic differential equation where the backward equation is reflected on the boundary of a closed convex(time-independent) domain. Moreover, we give a probabilistic interpretation for the viscosity solution of a kind of quasilinear variational inequalities.
文摘In this article, exact solutions of Wick-type stochastic Kudryashov–Sinelshchikov equation have been obtained by using improved Sub-equation method. We have used Hermite transform for transforming the Wick-type stochastic Kudryashov–Sinelshchikov equation to deterministic partial differential equation. Also we have applied inverse Hermite transform for obtaining a set of stochastic solutions in the white noise space.