许多学者研究了运用测试集对程序错误语句定位的问题,并提出了许多行之有效的方法,这些方法统称为TBFL(testing based fault localization)方法。后来人们发现,测试集里如果出现冗余,则这些冗余测试用例会伤害这些定位方法的功效。为了...许多学者研究了运用测试集对程序错误语句定位的问题,并提出了许多行之有效的方法,这些方法统称为TBFL(testing based fault localization)方法。后来人们发现,测试集里如果出现冗余,则这些冗余测试用例会伤害这些定位方法的功效。为了解决这个问题,Hao等人提出了SAFL(similarity aware fault localization)方法。实际上完全避免冗余是不可能的,因此从另一个角度构造了一个新的TBFL方法,称为随机TBFL方法。该方法的基本思想是:测试前对程序的语句错误概率进行先验分布,并把测试集看成随机变量,用测试用例反映的程序语句有关信息对程序语句的概率作一些调整,调整后的概率称为后验校正概率,最后根据这个后验概率对错误语句进行定位。将传统的TB-FL方法如Dicing方法、TARANTULA方法、SAFL方法纳入随机信息分析并通过几个实例进行分析和比较,结果表明,随机TBFL方法不仅能够正确定位错误语句,而且冗余对该方法的功效伤害不大。展开更多
运用测试集对程序错误语句定位的算法被统称为TBFL(Testing Based Fault Localization)方法。目前通用算法一般都没有利用测试员、程序员关于测试用例和程序的先验知识,致使这些“资源”被浪费。随机TBFL方法是一类新型TBFL方法,其精神...运用测试集对程序错误语句定位的算法被统称为TBFL(Testing Based Fault Localization)方法。目前通用算法一般都没有利用测试员、程序员关于测试用例和程序的先验知识,致使这些“资源”被浪费。随机TBFL方法是一类新型TBFL方法,其精神就是在随机理论的框架下,把这些先验知识(抽象为先验分布)和实际测试活动结合起来,从而更好地定位程序错误语句。事实上,随机TBFL算法可以看成这类算法的一般“模式”,人们可以从这个一般框架里开发出不同的算法。文中方法就是将随机TBFL算法加以简化得到的,主要是从各个测试用例的具体测试活动着手,对程序变量X的先验概率加以校正,如果测试集里有n个用例,便可以得到程序变量X的n个校正值,将n个校正值效应迭加,并且标准化,即得到程序变量X的后验概率,用它作为寻找错误语句的向导。由于提出的简化算法是借助一个校正因子矩阵而得到的,因此所提算法被称为基于校正因子的随机TBFL方法。文中还提出了3个有关不同TBFL算法的比较标准,并依据它们在一些具体实例上的表现证实所提算法的有效性。展开更多
运用测试集对程序错误语句定位的算法,现在被统称为TBFL(testing based fault localization)方法。目前通行的算法一般都没有利用测试员、程序员关于测试用例和程序的先验知识,致使这些"资源"白白浪费掉。文献[12]引入了一类...运用测试集对程序错误语句定位的算法,现在被统称为TBFL(testing based fault localization)方法。目前通行的算法一般都没有利用测试员、程序员关于测试用例和程序的先验知识,致使这些"资源"白白浪费掉。文献[12]引入了一类新的随机TBFL方法,其精神就是在随机理论的框架下,把这些先验知识和实际测试活动结合起来,从而对程序错误语句更好地定位。文献[12]提出的算法可以看成是这种类型算法的一般"模式",人们可以根据这个一般性的模式开发出不同的算法。基于文献[13]的思想,对文献[12]中的算法做了改进。主要是根据测试结果,构造执行矩阵E和功效矩阵F两个工具,并结合测试集和程序先验知识,对程序语句出错可能性引入两个级别的排序,然后对这两个排序进行"平均",得到程序语句出错可能性的平均等级排序,它可以作为程序员改正程序错误的导向。还提出两个有关不同TBFL算法的比较标准,根据这两个标准,在一些具体实例上,将所提算法和其他一般方法以及文献[12]中的方法进行了对比,结果显示所提算法的效果令人满意。展开更多
运用测试集对程序错误语句定位算法,现在被统称为TBFL(testing based fault localization)方法。目前通行的算法,一般都没有利用测试员、程序员关于测试用例和程序的先验知识,致使这些"资源"白白浪费掉。随机TBFL方法是一类新...运用测试集对程序错误语句定位算法,现在被统称为TBFL(testing based fault localization)方法。目前通行的算法,一般都没有利用测试员、程序员关于测试用例和程序的先验知识,致使这些"资源"白白浪费掉。随机TBFL方法是一类新的TBFL方法,其精神就是在随机理论的框架下,把这些先验知识和实际测试活动结合起来,从而对程序错误语句更好地定位。随机TBFL算法也可以看成是这种类型算法的一般"模式",人们可以从这个一般性的模式里,开发出不同的算法。基于Santelices等人的思想,对随机TBFL算法作了改进。主要是从测试结果里,构造执行矩阵E和功效矩阵F两个工具,通过它们结合测试集和程序先验知识,对程序语句出错可能性引入两个级别的排序,然后对这两个排序进行"平均",得到程序语句出错可能性的平均等级排序,它可以作为程序员改正程序错误的导向。还提出两个有关不同TBFL算法比较标准,就这两个标准,在一些具体实例上,该算法和其他一般方法以及随机TBFL方法对比,效果令人满意。展开更多
To obtain higher accurate position estimates, the stochastic model is estimated by using residual of observations, hence, the stochastic model describes the noise and bias in measurements more realistically. By using ...To obtain higher accurate position estimates, the stochastic model is estimated by using residual of observations, hence, the stochastic model describes the noise and bias in measurements more realistically. By using GPS data and broadcast ephemeris, the numerical results indicating the accurate position estimates at sub-meter level are obtainable.展开更多
This paper proposes the cooperative position estimation of a group of mobile robots, which pertbrms disaster relief tasks in a wide area. When searching the wide area, it becomes important to know a robot's position ...This paper proposes the cooperative position estimation of a group of mobile robots, which pertbrms disaster relief tasks in a wide area. When searching the wide area, it becomes important to know a robot's position correctly. However, for each mobile robot, it is impossible to know its own position correctly. Therefore, each mobile robot estimates its position from the data of sensor equipped on it. Generally, the sensor data is incorrect since there is sensor noise, etc. This research considers two types of the sensor data errors from omnidirectional camera. One is the error of white noise of the image captured by omnidirectional camera and so on. Another is the error of position and posture between two omnidirectional cameras. To solve the error of latter case, we proposed a self-position estimation algorithm for multiple mobile robots using two omnidirectional cameras and an accelerometer. On the other hand, to solve the error of the former case, this paper proposed an algorithm of cooperative position estimation for multiple mobile robots. In this algorithm, each mobile robot uses two omnidirectional cameras to observe the surrounding mobile robot and get the relative position between mobile robots. Each mobile robot estimates its position with only measurement data of each other mobile robots. The algorithm is based on a Bayesian filtering. Simulations of the proposed cooperative position estimation algorithm for multiple mobile robots are performed. The results show that position estimation is possible by only using measurement value from each other robot.展开更多
A series of advantages of single difference (SD) and undifferenced (ZD) models are given as compared with the double difference (DD) model. However, rank defects exist in SD and ZD models. The reparameterization metho...A series of advantages of single difference (SD) and undifferenced (ZD) models are given as compared with the double difference (DD) model. However, rank defects exist in SD and ZD models. The reparameterization method is provided to resolve this rank defect problem by estimating some combinations of the unknowns rather than the unknowns themselves. The reparameterization of SD and ZD functional models is discussed in detail with their stochastic models. The theoretical confirmation of the equivalence of undifferenced and differenced models is described in a straightforward way. The relationship between SD and ZD residuals is given and verified for some special purposes, e.g. research on the stochastical properties of GPS observations.展开更多
文摘运用测试集对程序错误语句定位的算法被统称为TBFL(Testing Based Fault Localization)方法。目前通用算法一般都没有利用测试员、程序员关于测试用例和程序的先验知识,致使这些“资源”被浪费。随机TBFL方法是一类新型TBFL方法,其精神就是在随机理论的框架下,把这些先验知识(抽象为先验分布)和实际测试活动结合起来,从而更好地定位程序错误语句。事实上,随机TBFL算法可以看成这类算法的一般“模式”,人们可以从这个一般框架里开发出不同的算法。文中方法就是将随机TBFL算法加以简化得到的,主要是从各个测试用例的具体测试活动着手,对程序变量X的先验概率加以校正,如果测试集里有n个用例,便可以得到程序变量X的n个校正值,将n个校正值效应迭加,并且标准化,即得到程序变量X的后验概率,用它作为寻找错误语句的向导。由于提出的简化算法是借助一个校正因子矩阵而得到的,因此所提算法被称为基于校正因子的随机TBFL方法。文中还提出了3个有关不同TBFL算法的比较标准,并依据它们在一些具体实例上的表现证实所提算法的有效性。
文摘运用测试集对程序错误语句定位的算法,现在被统称为TBFL(testing based fault localization)方法。目前通行的算法一般都没有利用测试员、程序员关于测试用例和程序的先验知识,致使这些"资源"白白浪费掉。文献[12]引入了一类新的随机TBFL方法,其精神就是在随机理论的框架下,把这些先验知识和实际测试活动结合起来,从而对程序错误语句更好地定位。文献[12]提出的算法可以看成是这种类型算法的一般"模式",人们可以根据这个一般性的模式开发出不同的算法。基于文献[13]的思想,对文献[12]中的算法做了改进。主要是根据测试结果,构造执行矩阵E和功效矩阵F两个工具,并结合测试集和程序先验知识,对程序语句出错可能性引入两个级别的排序,然后对这两个排序进行"平均",得到程序语句出错可能性的平均等级排序,它可以作为程序员改正程序错误的导向。还提出两个有关不同TBFL算法的比较标准,根据这两个标准,在一些具体实例上,将所提算法和其他一般方法以及文献[12]中的方法进行了对比,结果显示所提算法的效果令人满意。
文摘运用测试集对程序错误语句定位算法,现在被统称为TBFL(testing based fault localization)方法。目前通行的算法,一般都没有利用测试员、程序员关于测试用例和程序的先验知识,致使这些"资源"白白浪费掉。随机TBFL方法是一类新的TBFL方法,其精神就是在随机理论的框架下,把这些先验知识和实际测试活动结合起来,从而对程序错误语句更好地定位。随机TBFL算法也可以看成是这种类型算法的一般"模式",人们可以从这个一般性的模式里,开发出不同的算法。基于Santelices等人的思想,对随机TBFL算法作了改进。主要是从测试结果里,构造执行矩阵E和功效矩阵F两个工具,通过它们结合测试集和程序先验知识,对程序语句出错可能性引入两个级别的排序,然后对这两个排序进行"平均",得到程序语句出错可能性的平均等级排序,它可以作为程序员改正程序错误的导向。还提出两个有关不同TBFL算法比较标准,就这两个标准,在一些具体实例上,该算法和其他一般方法以及随机TBFL方法对比,效果令人满意。
基金Supported by the National 863 Program of China (No.2006AA12Z325) and the National Natural Science Foundation of China (No.40274005).
文摘To obtain higher accurate position estimates, the stochastic model is estimated by using residual of observations, hence, the stochastic model describes the noise and bias in measurements more realistically. By using GPS data and broadcast ephemeris, the numerical results indicating the accurate position estimates at sub-meter level are obtainable.
文摘This paper proposes the cooperative position estimation of a group of mobile robots, which pertbrms disaster relief tasks in a wide area. When searching the wide area, it becomes important to know a robot's position correctly. However, for each mobile robot, it is impossible to know its own position correctly. Therefore, each mobile robot estimates its position from the data of sensor equipped on it. Generally, the sensor data is incorrect since there is sensor noise, etc. This research considers two types of the sensor data errors from omnidirectional camera. One is the error of white noise of the image captured by omnidirectional camera and so on. Another is the error of position and posture between two omnidirectional cameras. To solve the error of latter case, we proposed a self-position estimation algorithm for multiple mobile robots using two omnidirectional cameras and an accelerometer. On the other hand, to solve the error of the former case, this paper proposed an algorithm of cooperative position estimation for multiple mobile robots. In this algorithm, each mobile robot uses two omnidirectional cameras to observe the surrounding mobile robot and get the relative position between mobile robots. Each mobile robot estimates its position with only measurement data of each other mobile robots. The algorithm is based on a Bayesian filtering. Simulations of the proposed cooperative position estimation algorithm for multiple mobile robots are performed. The results show that position estimation is possible by only using measurement value from each other robot.
文摘A series of advantages of single difference (SD) and undifferenced (ZD) models are given as compared with the double difference (DD) model. However, rank defects exist in SD and ZD models. The reparameterization method is provided to resolve this rank defect problem by estimating some combinations of the unknowns rather than the unknowns themselves. The reparameterization of SD and ZD functional models is discussed in detail with their stochastic models. The theoretical confirmation of the equivalence of undifferenced and differenced models is described in a straightforward way. The relationship between SD and ZD residuals is given and verified for some special purposes, e.g. research on the stochastical properties of GPS observations.