期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
全卷积网络结合改进的条件随机场-循环神经网络用于SAR图像场景分类 被引量:8
1
作者 汤浩 何楚 《计算机应用》 CSCD 北大核心 2016年第12期3436-3441,共6页
传统合成孔径雷达(SAR)图像基于粗分割像素块提取相关特征,后接支持向量机(SVM)和马尔可夫随机场(MRF)或条件随机场(CRF)进行分类,该方法存在同一像素块内部不同类别像素的误差,而且只考虑邻近区域未充分用到全局信息和结构信息。故考... 传统合成孔径雷达(SAR)图像基于粗分割像素块提取相关特征,后接支持向量机(SVM)和马尔可夫随机场(MRF)或条件随机场(CRF)进行分类,该方法存在同一像素块内部不同类别像素的误差,而且只考虑邻近区域未充分用到全局信息和结构信息。故考虑基于像素点引入全卷积网络(FCN),以ESAR卫星图像为样本,基于像素点级别构建卷积网络进行训练,得到各像素的初始类别分类概率。为了考虑全局像素类别的影响后接CRF-循环神经网络(CRF-RNN),利用FCN得到的初始概率,结合CRF结构得到全局像素类别转移结果,之后进行RNN的迭代进一步优化实验结果。由于基于像素点和考虑了全局信息与结构信息,克服了传统分类的部分缺点,使正确率较传统SVM或CRF方法平均提高了约6.5个百分点。由于CRF-RNN的距离权重是用高斯核人为拟合的,不能随实际训练样本来改变和确定,故存在一定误差,针对该问题提出可训练的全图距离权重卷积网络来改进CRF-RNN,最终实验结果表明改进后方法的正确率较未改进的CRF-RNN又提高了1.04个百分点。 展开更多
关键词 全卷积网络 条件随机场-循环神经网络 全局信息 全图距离权重
下载PDF
改进的卷积神经网络在医学影像分割中的应用 被引量:7
2
作者 马其鹏 谢林柏 彭力 《激光与光电子学进展》 CSCD 北大核心 2020年第14期182-188,共7页
针对现有方法在脑肿瘤图像分割上的不足,提出一种基于改进的卷积神经网络的脑肿瘤图像分割算法。将DenseNet和U-net网络结构相融合,以提高对图像特征的提取能力。为了扩大卷积核的感受野,采用了空洞卷积。将分割结果通过完全连接的条件... 针对现有方法在脑肿瘤图像分割上的不足,提出一种基于改进的卷积神经网络的脑肿瘤图像分割算法。将DenseNet和U-net网络结构相融合,以提高对图像特征的提取能力。为了扩大卷积核的感受野,采用了空洞卷积。将分割结果通过完全连接的条件随机场循环神经网络进行精细分割输出,从而得到精确的脑肿瘤分割区域。实验结果表明,与传统的深度学习方法相比,平均Dice可以达到91.64%,算法在准确率上有较好的提升。 展开更多
关键词 图像处理 图像分割 脑肿瘤分割 卷积神经网络 空洞卷积 完全连接的条件随机循环神经网络
原文传递
Delay-Dependent Exponential Stability of Stochastic Delayed Recurrent Neural Networks with Markovian Switching
3
作者 刘海峰 王春华 魏国亮 《Journal of Donghua University(English Edition)》 EI CAS 2008年第2期195-199,共5页
The exponential stability problem is investigated for a class of stochastic recurrent neural networks with time delay and Markovian switching. By using Ito's differential formula and the Lyapunov stability theory, su... The exponential stability problem is investigated for a class of stochastic recurrent neural networks with time delay and Markovian switching. By using Ito's differential formula and the Lyapunov stability theory, sufficient condition for the solvability of this problem is derived in term of linear matrix inequalities, which can be easily checked by resorting to available software packages. A numerical example and the simulation are exploited to demonstrate the effectiveness of the proposed results. 展开更多
关键词 exponential stability stochastic recurrent neural network linear matrix inequality time delay Markovian switching
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部