本文讨论B值随机元的随机指标中心极限定理,证明了如下的结果:设B是2型空间(Spaceof Rademacher-type 2),{X_n,n≥1}是i.i.d.的B值随机元序列,S_n=sum from i=1 to n X_i,EX_1=0,E||X_1||~2<∞;{τ_n,n≥l}是取自然数值的实随机变量...本文讨论B值随机元的随机指标中心极限定理,证明了如下的结果:设B是2型空间(Spaceof Rademacher-type 2),{X_n,n≥1}是i.i.d.的B值随机元序列,S_n=sum from i=1 to n X_i,EX_1=0,E||X_1||~2<∞;{τ_n,n≥l}是取自然数值的实随机变量序列,τ是取正值的实随机变量,并且,则必存在B上的Gaussian测度γ,使得(S_(τ_n)/(τ_n)^(1/2))γ.展开更多
文摘本文讨论B值随机元的随机指标中心极限定理,证明了如下的结果:设B是2型空间(Spaceof Rademacher-type 2),{X_n,n≥1}是i.i.d.的B值随机元序列,S_n=sum from i=1 to n X_i,EX_1=0,E||X_1||~2<∞;{τ_n,n≥l}是取自然数值的实随机变量序列,τ是取正值的实随机变量,并且,则必存在B上的Gaussian测度γ,使得(S_(τ_n)/(τ_n)^(1/2))γ.