A constant-potential system driven by multiplicative dichotomous noise and subject to an input oscillatory signal is investigated. Two phenomena of stochastic resonance are observed. One is the response as a function ...A constant-potential system driven by multiplicative dichotomous noise and subject to an input oscillatory signal is investigated. Two phenomena of stochastic resonance are observed. One is the response as a function of the noise's parameters; the other is that as a function of the input signal frequency. A phenomenon of multi-resonance (there are three or four peaks) is found for the response as a function of a parameter of the noise. A phenomenon of reverse-resonance is found, for which the response of the system to the signal can be weakened by the presence of the noise (there is an optimal minimum). These results help in studies of the systems with multiplicative dichotomous noise, such as the semiconductor, the proteins motor, the chemical reaction, and so on.展开更多
In the early fault period of high-speed train systems, the interested characteristic signals are relatively weak and easily submerged in heavy noise. In order to solve this problem, a state-transition-algorithm (STA)-...In the early fault period of high-speed train systems, the interested characteristic signals are relatively weak and easily submerged in heavy noise. In order to solve this problem, a state-transition-algorithm (STA)-based adaptive stochastic resonance (SR) method is proposed, which provides an alternative solution to the problem that the traditional SR has fixed parameters or optimizes only a single parameter and ignores the interaction between parameters. To be specific, the frequency-shifted and re-scaling are firstly used to pre-process an actual large signal to meet the requirement of the adiabatic approximate small parameter. And then, the signal-to-noise ratio is used as the optimization target, and the STA-based adaptive SR is used to synchronously optimize the system parameters. Finally, the optimal extraction and frequency recovery of a weak characteristic signal from a broken rotor bar fault are realized. The proposed method is compared with the existing methods by the early broken rotor bar experiments of traction motor. Experiment results show that the proposed method is better than the other methods in extracting weak signals, and the validity of this method is verified.展开更多
Periodical polarization modulation scheme is proposed to suppress timing jitters induced by frequency fluctuations between two polarization components of solitons. In periodical polarization modulation scheme, the pol...Periodical polarization modulation scheme is proposed to suppress timing jitters induced by frequency fluctuations between two polarization components of solitons. In periodical polarization modulation scheme, the polarization states of the soliton are modulated to excite equally for suppressing timing jitters induced by two unequal polarization components in the soliton trapping. Moreover, polarization modulation can weaken the effect of random birefringence on the soliton pulses in each relay distance. The numerical result shows that the soliton timing jitters are suppressed by our proposed method.展开更多
Models of circadian genetic oscillators involving interlinked feedback processes in molecular level genetic networks in Drosophila melanogaster and Neurospora crassa are studied, and mechanisms whereby synchronization...Models of circadian genetic oscillators involving interlinked feedback processes in molecular level genetic networks in Drosophila melanogaster and Neurospora crassa are studied, and mechanisms whereby synchronization can arise in an assembly of cells are examined. The individual subcellular circadian oscillatory processes are stochastic in nature due to the small numbers of molecules that are involved, and are subject to large fluctuations. The authors investigate and present the simulations of the stochastic dynamics of ensembles of clock-regulating proteins in different nuclei that communicate via ancillary small molecules, environmental parameters, additive cellular noise, or through diffusive processes. The results show that the emergence of collective oscillations is a macroscopic observable which has its origins in the microscopic coupling between distinct cellular oscillators.展开更多
The stochastic stability of the harmonically and randomly excited Duffing oscillator with damping modeled by a fractional derivative of Caputo's definition is analyzed.First,the system state is approximately descr...The stochastic stability of the harmonically and randomly excited Duffing oscillator with damping modeled by a fractional derivative of Caputo's definition is analyzed.First,the system state is approximately described by It equations through the stochastic averaging method based on the generalized harmonic function.Then,the associated expression for the largest Lyapunov exponent of the linearized averaged It is derived,and the necessary and sufficient condition for the asymptotic stability with probability one of the trivial solution of the original system is obtained approximately by letting the largest Lyapunov exponent be negative.The effects of fractional orders and random excitation intensities on the asymptotic stability with probability one determined by the largest Lyapunov exponent are shown graphically.展开更多
In this paper, we investigate the escape of Brownian particles and stochastic resonance (SR) with low-temperatures quantum fluctuations by using the quantum Smoluchowski equations at low-temperature. Two specific exam...In this paper, we investigate the escape of Brownian particles and stochastic resonance (SR) with low-temperatures quantum fluctuations by using the quantum Smoluchowski equations at low-temperature. Two specific examples have been considered: one is the example of bistable system, and the other is the example of metastable system. The explicit expressions of the mean-first passage time (MFPT) and signal-to-noise ratio (SNR) for both specific examples are obtained, respectively. Based on the numerical computations, we compare the quantum case with its classical counterpart. Our research results show that: (i) the quantum effect accelerates the escape of the Brownian particle in comparison with the classical result and (ii) the quantum effect enhances the SR in the SNR as a function of β for a bistable system (i.e., β = 1/kBT, kB is the Boltzmann constant and T is the temperature), while for a metastable system, the β amplifies the quantum effects, and the quantum effect weakens the SNR as a function of β.展开更多
基金The project supported by National Natural Science Foundation of China under Grant No. 10375009, SRF for R0CS, SEM, and K.C. Wong Magna Fund in Ningbo University
文摘A constant-potential system driven by multiplicative dichotomous noise and subject to an input oscillatory signal is investigated. Two phenomena of stochastic resonance are observed. One is the response as a function of the noise's parameters; the other is that as a function of the input signal frequency. A phenomenon of multi-resonance (there are three or four peaks) is found for the response as a function of a parameter of the noise. A phenomenon of reverse-resonance is found, for which the response of the system to the signal can be weakened by the presence of the noise (there is an optimal minimum). These results help in studies of the systems with multiplicative dichotomous noise, such as the semiconductor, the proteins motor, the chemical reaction, and so on.
基金Projects(61490702,61773407,61803390,61751312)supported by the National Natural Science Foundation of ChinaProject(61725306)supported by the National Science Foundation for Distinguished Young Scholars of China+5 种基金Project(61621062)supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of ChinaProject(2017TP1002)supported by Hunan Provincial Key Laboratory,ChinaProject(6141A0202210)supported by the Program of the Joint Pre-research Foundation of the Chinese Ministry of EducationProject(61400030501)supported by the General Program of the Equipment Pre-research Field Foundation of ChinaProject(2016TP1023)supported by the Science and Technology Project in Hunan Province Hunan Science and Technology Agency of ChinaProject(2018FJ34)supported by the Science and Technology Project in Shaoyang Science and Technology Agency of China
文摘In the early fault period of high-speed train systems, the interested characteristic signals are relatively weak and easily submerged in heavy noise. In order to solve this problem, a state-transition-algorithm (STA)-based adaptive stochastic resonance (SR) method is proposed, which provides an alternative solution to the problem that the traditional SR has fixed parameters or optimizes only a single parameter and ignores the interaction between parameters. To be specific, the frequency-shifted and re-scaling are firstly used to pre-process an actual large signal to meet the requirement of the adiabatic approximate small parameter. And then, the signal-to-noise ratio is used as the optimization target, and the STA-based adaptive SR is used to synchronously optimize the system parameters. Finally, the optimal extraction and frequency recovery of a weak characteristic signal from a broken rotor bar fault are realized. The proposed method is compared with the existing methods by the early broken rotor bar experiments of traction motor. Experiment results show that the proposed method is better than the other methods in extracting weak signals, and the validity of this method is verified.
基金Natural Science Foundation of Guangdong Province(04010397) Natural Science Foundation of FoshanUniversity , China
文摘Periodical polarization modulation scheme is proposed to suppress timing jitters induced by frequency fluctuations between two polarization components of solitons. In periodical polarization modulation scheme, the polarization states of the soliton are modulated to excite equally for suppressing timing jitters induced by two unequal polarization components in the soliton trapping. Moreover, polarization modulation can weaken the effect of random birefringence on the soliton pulses in each relay distance. The numerical result shows that the soliton timing jitters are suppressed by our proposed method.
文摘Models of circadian genetic oscillators involving interlinked feedback processes in molecular level genetic networks in Drosophila melanogaster and Neurospora crassa are studied, and mechanisms whereby synchronization can arise in an assembly of cells are examined. The individual subcellular circadian oscillatory processes are stochastic in nature due to the small numbers of molecules that are involved, and are subject to large fluctuations. The authors investigate and present the simulations of the stochastic dynamics of ensembles of clock-regulating proteins in different nuclei that communicate via ancillary small molecules, environmental parameters, additive cellular noise, or through diffusive processes. The results show that the emergence of collective oscillations is a macroscopic observable which has its origins in the microscopic coupling between distinct cellular oscillators.
基金supported by the National Natural Science Foundation of China(Grant Nos.10932009,11072212 and 11002059)the Specialized Research Fund for the Doctoral Program of Higher Education(Grant No.20103501120003)+2 种基金the Natural Science Foundation of Fujian Province (Grant No.2010J05006)the Fundamental Research Funds for Huaqiao University(Grant No.JB-SJ1010)the Research & Development Start Funds of Huaqiao University(Grant No.09BS622)
文摘The stochastic stability of the harmonically and randomly excited Duffing oscillator with damping modeled by a fractional derivative of Caputo's definition is analyzed.First,the system state is approximately described by It equations through the stochastic averaging method based on the generalized harmonic function.Then,the associated expression for the largest Lyapunov exponent of the linearized averaged It is derived,and the necessary and sufficient condition for the asymptotic stability with probability one of the trivial solution of the original system is obtained approximately by letting the largest Lyapunov exponent be negative.The effects of fractional orders and random excitation intensities on the asymptotic stability with probability one determined by the largest Lyapunov exponent are shown graphically.
基金supported by the Natural Science Foundation of Yunnan Province (Grant No. 2010CD031)the National Natural Science Foun-dation of China (Grant Nos. 50906035, 51066002 and U0937604)
文摘In this paper, we investigate the escape of Brownian particles and stochastic resonance (SR) with low-temperatures quantum fluctuations by using the quantum Smoluchowski equations at low-temperature. Two specific examples have been considered: one is the example of bistable system, and the other is the example of metastable system. The explicit expressions of the mean-first passage time (MFPT) and signal-to-noise ratio (SNR) for both specific examples are obtained, respectively. Based on the numerical computations, we compare the quantum case with its classical counterpart. Our research results show that: (i) the quantum effect accelerates the escape of the Brownian particle in comparison with the classical result and (ii) the quantum effect enhances the SR in the SNR as a function of β for a bistable system (i.e., β = 1/kBT, kB is the Boltzmann constant and T is the temperature), while for a metastable system, the β amplifies the quantum effects, and the quantum effect weakens the SNR as a function of β.