针对传统随机向量函数链接网络集成模型时多样性不足和泛化性能差的问题,提出一种改进的随机向量函数链接集成模型.首先,通过6种简单回归模型替代传统随机向量函数链接网络中的直接链接;其次,采用高斯过程回归(Gaussian process regress...针对传统随机向量函数链接网络集成模型时多样性不足和泛化性能差的问题,提出一种改进的随机向量函数链接集成模型.首先,通过6种简单回归模型替代传统随机向量函数链接网络中的直接链接;其次,采用高斯过程回归(Gaussian process regression,GPR)方法初始化隐含层参数,增强各基分类器的多样性;最后,使用不同的结合策略,集成具有差异性的基分类器得到预测模型.结果表明,改进的随机向量函数链接集成模型的预测精度明显高于其他传统集成模型,较传统随机向量函数链接网络具有更好的泛化性能.展开更多
作为磨矿过程的主要生产质量指标,磨矿粒度是实现磨矿过程闭环优化控制的关键.将磨矿粒度控制在一定范围内能够提高选别作业的精矿品位和有用矿物的回收率,并减少有用矿物的金属流失.由于经济和技术上的限制,磨矿粒度的实时测量难以实现...作为磨矿过程的主要生产质量指标,磨矿粒度是实现磨矿过程闭环优化控制的关键.将磨矿粒度控制在一定范围内能够提高选别作业的精矿品位和有用矿物的回收率,并减少有用矿物的金属流失.由于经济和技术上的限制,磨矿粒度的实时测量难以实现.因此,磨矿粒度的在线估计显得尤为重要.然而,目前我国所处理的铁矿石大多数为性质不稳定的赤铁矿,其矿浆颗粒存在磁团聚现象,所采集的数据存在大量异常值,使得利用数据建立的磨矿粒度模型存在较大误差.同时,传统前馈神经网络在磨矿粒度数据建模过程中存在收敛速度慢、易于陷入局部最小值等缺点,且单一模型泛化性能较差,现有的集成学习在异常值干扰下性能严重下降.因此,本文在改进的随机向量函数链接网络(random vector functional link networks,RVFLN)的基础上,将Bagging算法与自适应加权数据融合技术相结合,提出一种基于鲁棒随机向量函数链接网络的集成建模方法,用于磨矿粒度集成建模.所提方法首先通过基准回归问题进行了实验研究,然后采用磨矿工业实际数据进行验证,表明其有效性.展开更多
文摘针对传统随机向量函数链接网络集成模型时多样性不足和泛化性能差的问题,提出一种改进的随机向量函数链接集成模型.首先,通过6种简单回归模型替代传统随机向量函数链接网络中的直接链接;其次,采用高斯过程回归(Gaussian process regression,GPR)方法初始化隐含层参数,增强各基分类器的多样性;最后,使用不同的结合策略,集成具有差异性的基分类器得到预测模型.结果表明,改进的随机向量函数链接集成模型的预测精度明显高于其他传统集成模型,较传统随机向量函数链接网络具有更好的泛化性能.
文摘作为磨矿过程的主要生产质量指标,磨矿粒度是实现磨矿过程闭环优化控制的关键.将磨矿粒度控制在一定范围内能够提高选别作业的精矿品位和有用矿物的回收率,并减少有用矿物的金属流失.由于经济和技术上的限制,磨矿粒度的实时测量难以实现.因此,磨矿粒度的在线估计显得尤为重要.然而,目前我国所处理的铁矿石大多数为性质不稳定的赤铁矿,其矿浆颗粒存在磁团聚现象,所采集的数据存在大量异常值,使得利用数据建立的磨矿粒度模型存在较大误差.同时,传统前馈神经网络在磨矿粒度数据建模过程中存在收敛速度慢、易于陷入局部最小值等缺点,且单一模型泛化性能较差,现有的集成学习在异常值干扰下性能严重下降.因此,本文在改进的随机向量函数链接网络(random vector functional link networks,RVFLN)的基础上,将Bagging算法与自适应加权数据融合技术相结合,提出一种基于鲁棒随机向量函数链接网络的集成建模方法,用于磨矿粒度集成建模.所提方法首先通过基准回归问题进行了实验研究,然后采用磨矿工业实际数据进行验证,表明其有效性.