This work is devoted to stochastic systems arising from empirical measures of random sequences(termed primary sequences) that are modulated by another Markov chain. The Markov chain is used to model random discrete ev...This work is devoted to stochastic systems arising from empirical measures of random sequences(termed primary sequences) that are modulated by another Markov chain. The Markov chain is used to model random discrete events that are not represented in the primary sequences. One novel feature is that in lieu of the usual scaling in empirical measure sequences, the authors consider scaling in both space and time, which leads to new limit results. Under broad conditions, it is shown that a scaled sequence of the empirical measure converges weakly to a number of Brownian bridges modulated by a continuous-time Markov chain. Ramifications and special cases are also considered.展开更多
Flexible laser display is a critical component for an information output port in next-generation wearable devices.So far,the lack of appropriate display panels capable of providing sustained operation under rigorous m...Flexible laser display is a critical component for an information output port in next-generation wearable devices.So far,the lack of appropriate display panels capable of providing sustained operation under rigorous mechanical conditions impedes the development of flexible laser displays with high reliability.Owing to the multiple scattering feedback mechanism,random lasers render high mechanical flexibility to withstand deformation,thus making them promising candidates for flexible display planes.However,the inability to obtain pixelated random laser arrays with highly ordered emissive geometries hinders the application of flexible laser displays in the wearable device.Here,for the first time,we demonstrate a mass fabrication strategy of full-color random laser arrays for flexible display panels.The feedback closed loops can be easily fulfilled in the pixels by multiple scatterings to generate durative random lasing.Due to the sustained operation of random laser,the display performance was well-maintained under mechanical deformations,and as a result,a flexible laser display panel was achieved.Our finding will provide a guidance for the development of flexible laser displays and laser illumination devices.展开更多
基金supported by the Air Force Office of Scientific Research under Grant No.FA9550-15-1-0131
文摘This work is devoted to stochastic systems arising from empirical measures of random sequences(termed primary sequences) that are modulated by another Markov chain. The Markov chain is used to model random discrete events that are not represented in the primary sequences. One novel feature is that in lieu of the usual scaling in empirical measure sequences, the authors consider scaling in both space and time, which leads to new limit results. Under broad conditions, it is shown that a scaled sequence of the empirical measure converges weakly to a number of Brownian bridges modulated by a continuous-time Markov chain. Ramifications and special cases are also considered.
基金financially supported by the Ministry of Science and Technology of China(2017YFA0204502)the National Natural Science Foundation of China(21790364)。
文摘Flexible laser display is a critical component for an information output port in next-generation wearable devices.So far,the lack of appropriate display panels capable of providing sustained operation under rigorous mechanical conditions impedes the development of flexible laser displays with high reliability.Owing to the multiple scattering feedback mechanism,random lasers render high mechanical flexibility to withstand deformation,thus making them promising candidates for flexible display planes.However,the inability to obtain pixelated random laser arrays with highly ordered emissive geometries hinders the application of flexible laser displays in the wearable device.Here,for the first time,we demonstrate a mass fabrication strategy of full-color random laser arrays for flexible display panels.The feedback closed loops can be easily fulfilled in the pixels by multiple scatterings to generate durative random lasing.Due to the sustained operation of random laser,the display performance was well-maintained under mechanical deformations,and as a result,a flexible laser display panel was achieved.Our finding will provide a guidance for the development of flexible laser displays and laser illumination devices.