期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
随机时变特征下基于行程时间的路径选择算法 被引量:6
1
作者 杨玲敏 佘日辉 +1 位作者 王红 朱顺应 《交通运输系统工程与信息》 EI CSCD 北大核心 2017年第5期122-128,143,共8页
基于南京市实测数据分析了道路交通流实际随机、时变特征,证实现有行程时间最短路径算法相关研究中对道路交通流的随机、时变特征的假设与实际不符.以反例论证道路交通流实际随机、时变特征下,自适应算法(Adaptive Routing Policy)在求... 基于南京市实测数据分析了道路交通流实际随机、时变特征,证实现有行程时间最短路径算法相关研究中对道路交通流的随机、时变特征的假设与实际不符.以反例论证道路交通流实际随机、时变特征下,自适应算法(Adaptive Routing Policy)在求解行程时间最短路径方面的无效性.针对交通模式时段内道路交通流随机、时间无关的特征,以及路段行程过程中行程时间的确切概率分布难以知晓的实际情况,提出基于历史概率分布的历史期望行程时间最短k路径基础上的考虑风险衡量及当前道路实际交通流状况的路径选择算法. 展开更多
关键词 智能交通 路径选择算法 行程时间最短路径 道路交通流 随机时变特征
下载PDF
Unified deep learning model for El Niño/Southern Oscillation forecasts by incorporating seasonality in climate data 被引量:6
2
作者 Yoo-Geun Ham Jeong-Hwan Kim +1 位作者 Eun-Sol Kim Kyung-Yun On 《Science Bulletin》 SCIE EI CSCD 2021年第13期1358-1366,M0004,共10页
Although deep learning has achieved a milestone in forecasting the El Niño-Southern Oscillation(ENSO),the current models are insufficient to simulate diverse characteristics of the ENSO,which depends on the calen... Although deep learning has achieved a milestone in forecasting the El Niño-Southern Oscillation(ENSO),the current models are insufficient to simulate diverse characteristics of the ENSO,which depends on the calendar season.Consequently,a model was generated for specific seasons which indicates these models did not consider physical constraints between different target seasons and forecast lead times,thereby leading to arbitrary fluctuations in the predicted time series.To overcome this problem and account for ENSO seasonality,we developed an all-season convolutional neural network(A_CNN)model.The correlation skill of the ENSO index was particularly improved for forecasts of the boreal spring,which is the most challenging season to predict.Moreover,activation map values indicated a clear time evolution with increasing forecast lead time.The study findings reveal the comprehensive role of various climate precursors of ENSO events that act differently over time,thus indicating the potential of the A_CNN model as a diagnostic tool. 展开更多
关键词 Deep learning ENSO forecasts Seasonality of the ENSO
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部