随机最大似然算法(Stochastic Maximum Likelihood,SML)具有优越的波达方位(Direction-of-Arrival,DOA)估计性能,但SML解析过程较高的计算复杂度限制了该算法在实际系统中的应用.针对SML计算复杂度高的问题,提出一种低复杂度的粒子群优...随机最大似然算法(Stochastic Maximum Likelihood,SML)具有优越的波达方位(Direction-of-Arrival,DOA)估计性能,但SML解析过程较高的计算复杂度限制了该算法在实际系统中的应用.针对SML计算复杂度高的问题,提出一种低复杂度的粒子群优化算法(Particle Swarm Optimization,PSO),解决了传统PSO算法中粒子数多和迭代次数多的双重缺点.首先,根据天线获得的信号,将旋转不变子空间法(Estimation of Signal Parameters via Rotational Invariance Techniques,ESPRIT)求得的闭式解作为DOA的预估计值,同时计算系统此时的信噪比以及SML在此信噪比下的克拉-美罗界(Cramer-Rao bound,CRB).然后,根据DOA预估计值和当前CRB值在SML最优解的近邻范围内确定较小的初始化空间,并在该空间初始化少量粒子.最后通过设计合适的惯性因子w,使粒子以合理的速度搜索最优解.实验结果表明,改进PSO算法所需的粒子个数和迭代次数大约是传统PSO算法的1/5,降低了SML的解析复杂度,计算时间是传统PSO算法的1/10,因此在收敛速度上也有显著的优势.展开更多
In this paper, using the kernel weight function, we obtain the parameter estimation of p-norm distribution in semi-parametric regression model, which is effective to decide the distribution of random errors. Under the...In this paper, using the kernel weight function, we obtain the parameter estimation of p-norm distribution in semi-parametric regression model, which is effective to decide the distribution of random errors. Under the assumption that the distribution of observations is unimodal and symmetry, this method can give the estimates of the parametric. Finally, two simulated adjustment problem are constructed to explain this method. The new method presented in this paper shows an effective way of solving the problem; the estimated values are nearer to their theoretical ones than those by least squares adjustment approach.展开更多
Empirical likelihood(EL) combined with estimating equations(EE) provides a modern semi-parametric alternative to classical estimation techniques such as maximum likelihood estimation(MLE). This paper not only uses clo...Empirical likelihood(EL) combined with estimating equations(EE) provides a modern semi-parametric alternative to classical estimation techniques such as maximum likelihood estimation(MLE). This paper not only uses closed form of conditional expectation and conditional variance of Logistic equation with random perturbation to perform maximum empirical likelihood estimation(MELE) for the model parameters, but also proposes an empirical likelihood ratio statistic(ELRS) for hypotheses concerning the interesting parameter. Monte Carlo simulation results show that MELE and ELRS provide competitive performance to parametric alternatives.展开更多
文摘随机最大似然算法(Stochastic Maximum Likelihood,SML)具有优越的波达方位(Direction-of-Arrival,DOA)估计性能,但SML解析过程较高的计算复杂度限制了该算法在实际系统中的应用.针对SML计算复杂度高的问题,提出一种低复杂度的粒子群优化算法(Particle Swarm Optimization,PSO),解决了传统PSO算法中粒子数多和迭代次数多的双重缺点.首先,根据天线获得的信号,将旋转不变子空间法(Estimation of Signal Parameters via Rotational Invariance Techniques,ESPRIT)求得的闭式解作为DOA的预估计值,同时计算系统此时的信噪比以及SML在此信噪比下的克拉-美罗界(Cramer-Rao bound,CRB).然后,根据DOA预估计值和当前CRB值在SML最优解的近邻范围内确定较小的初始化空间,并在该空间初始化少量粒子.最后通过设计合适的惯性因子w,使粒子以合理的速度搜索最优解.实验结果表明,改进PSO算法所需的粒子个数和迭代次数大约是传统PSO算法的1/5,降低了SML的解析复杂度,计算时间是传统PSO算法的1/10,因此在收敛速度上也有显著的优势.
文摘In this paper, using the kernel weight function, we obtain the parameter estimation of p-norm distribution in semi-parametric regression model, which is effective to decide the distribution of random errors. Under the assumption that the distribution of observations is unimodal and symmetry, this method can give the estimates of the parametric. Finally, two simulated adjustment problem are constructed to explain this method. The new method presented in this paper shows an effective way of solving the problem; the estimated values are nearer to their theoretical ones than those by least squares adjustment approach.
基金supported by the National Natural Science Foundation of China under Grant No.11101452the Natural Science Foundation Project of CQ CSTC under Grant No.2012jjA00035the National Basic Research Program of China under Grant No.2011CB808000
文摘Empirical likelihood(EL) combined with estimating equations(EE) provides a modern semi-parametric alternative to classical estimation techniques such as maximum likelihood estimation(MLE). This paper not only uses closed form of conditional expectation and conditional variance of Logistic equation with random perturbation to perform maximum empirical likelihood estimation(MELE) for the model parameters, but also proposes an empirical likelihood ratio statistic(ELRS) for hypotheses concerning the interesting parameter. Monte Carlo simulation results show that MELE and ELRS provide competitive performance to parametric alternatives.