提出了一种基于层叠条件随机场的中文病历命名实体识别新方法,该方法在第一层条件随机场模型中实现对病历中身体基本部位或组织和基本疾病名称的识别,将识别结果传递到第二层条件随机场模型(Conditional Random Field,CRF),同时定义一...提出了一种基于层叠条件随机场的中文病历命名实体识别新方法,该方法在第一层条件随机场模型中实现对病历中身体基本部位或组织和基本疾病名称的识别,将识别结果传递到第二层条件随机场模型(Conditional Random Field,CRF),同时定义一个由词性和实体特征结合而成的组合特征,与字符特征、词边界特征及上下文特征共同作为第二层CRF模型的特征集,为疾病名称和临床症状两类命名实体的识别提供决策支持。在利用CRF++进行的开放测试中,本文模型相比于无自定义组合特征的层叠CRF模型,F值提高了3%;相比于单层CRF模型,F值提高了7%,总体性能有显著提高。展开更多
中文领域术语抽取是中文信息处理领域的一项重要研究任务,在词典构建、领域本体构造等方面有重要的应用.采用条件随机场(conditional random fields,CRFs),从汽车知识网站上爬取网页,预处理后得到纯文本,然后分析汽车领域的术语组成特...中文领域术语抽取是中文信息处理领域的一项重要研究任务,在词典构建、领域本体构造等方面有重要的应用.采用条件随机场(conditional random fields,CRFs),从汽车知识网站上爬取网页,预处理后得到纯文本,然后分析汽车领域的术语组成特点并制定相应的语料标注规则进行人工标注,对汽车领域进行了术语抽取.在使用词和词性特征的基础上增加了词典特征、领域词频和背景领域词频等特征,精确率、召回率和F-值分别达到84.61%、80.50%和82.50%.与其他方法比较说明所提出的汽车领域术语抽取方法是有效的.展开更多
文摘提出了一种基于层叠条件随机场的中文病历命名实体识别新方法,该方法在第一层条件随机场模型中实现对病历中身体基本部位或组织和基本疾病名称的识别,将识别结果传递到第二层条件随机场模型(Conditional Random Field,CRF),同时定义一个由词性和实体特征结合而成的组合特征,与字符特征、词边界特征及上下文特征共同作为第二层CRF模型的特征集,为疾病名称和临床症状两类命名实体的识别提供决策支持。在利用CRF++进行的开放测试中,本文模型相比于无自定义组合特征的层叠CRF模型,F值提高了3%;相比于单层CRF模型,F值提高了7%,总体性能有显著提高。
文摘中文领域术语抽取是中文信息处理领域的一项重要研究任务,在词典构建、领域本体构造等方面有重要的应用.采用条件随机场(conditional random fields,CRFs),从汽车知识网站上爬取网页,预处理后得到纯文本,然后分析汽车领域的术语组成特点并制定相应的语料标注规则进行人工标注,对汽车领域进行了术语抽取.在使用词和词性特征的基础上增加了词典特征、领域词频和背景领域词频等特征,精确率、召回率和F-值分别达到84.61%、80.50%和82.50%.与其他方法比较说明所提出的汽车领域术语抽取方法是有效的.