期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
Gauss白噪声参激下悬挂轮对系统的随机稳定性研究
被引量:
4
1
作者
张波
曾京
刘伟渭
《振动与冲击》
EI
CSCD
北大核心
2015年第19期49-56,共8页
在非线性悬挂轮对系统中加入了Gauss白噪声参激,通过Hamilton系统理论和随机微分方程理论,将系统转化为拟不可积Hamilton系统伊藤随机微分方程组,根据拟不可积Hamilton系统的随机平均法,把该方程组降维为一维扩散的平均伊藤随机微分方程...
在非线性悬挂轮对系统中加入了Gauss白噪声参激,通过Hamilton系统理论和随机微分方程理论,将系统转化为拟不可积Hamilton系统伊藤随机微分方程组,根据拟不可积Hamilton系统的随机平均法,把该方程组降维为一维扩散的平均伊藤随机微分方程,使原系统的解依概率收敛到一维伊藤扩散过程。通过分析一维扩散奇异边界的性态得到了随机全局稳定性的条件。最后对系统的D分叉和P分叉行为进行了研究,并画出了随机P分叉图和随机极限环图。结果表明,随机项的作用使系统的临界速度发生漂移,随着噪声项强度增大,临界速度显著降低。P分叉后系统表现为最大可能意义上的随机极限环振荡,而D分叉后统表现为概率1意义下不稳定的非极限环随机振荡。
展开更多
关键词
随机
平均法
奇异边界
随机
P分叉
图
随机极限环图
下载PDF
职称材料
题名
Gauss白噪声参激下悬挂轮对系统的随机稳定性研究
被引量:
4
1
作者
张波
曾京
刘伟渭
机构
西南交通大学牵引动力国家重点实验室
出处
《振动与冲击》
EI
CSCD
北大核心
2015年第19期49-56,共8页
基金
国家"973"计划(2011GB711106)
国家"863"计划(2012AA112002)
文摘
在非线性悬挂轮对系统中加入了Gauss白噪声参激,通过Hamilton系统理论和随机微分方程理论,将系统转化为拟不可积Hamilton系统伊藤随机微分方程组,根据拟不可积Hamilton系统的随机平均法,把该方程组降维为一维扩散的平均伊藤随机微分方程,使原系统的解依概率收敛到一维伊藤扩散过程。通过分析一维扩散奇异边界的性态得到了随机全局稳定性的条件。最后对系统的D分叉和P分叉行为进行了研究,并画出了随机P分叉图和随机极限环图。结果表明,随机项的作用使系统的临界速度发生漂移,随着噪声项强度增大,临界速度显著降低。P分叉后系统表现为最大可能意义上的随机极限环振荡,而D分叉后统表现为概率1意义下不稳定的非极限环随机振荡。
关键词
随机
平均法
奇异边界
随机
P分叉
图
随机极限环图
Keywords
stochastic averaging method
singular boundary
stochastic P-bifurcation diagram
stochastic limit cycle diagram
分类号
U271.91 [机械工程—车辆工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
Gauss白噪声参激下悬挂轮对系统的随机稳定性研究
张波
曾京
刘伟渭
《振动与冲击》
EI
CSCD
北大核心
2015
4
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部