The procedure of stratified double quartile ranked set sampling (SDQRSS) method is introduced to estimate the population mean. The SDQRSS is compared with the simple random sampling (SRS), stratified ranked set sa...The procedure of stratified double quartile ranked set sampling (SDQRSS) method is introduced to estimate the population mean. The SDQRSS is compared with the simple random sampling (SRS), stratified ranked set sampling (SRSS) and stratified simple random sampling (SSRS). It is shown that SDQRSS estimator is an unbiased of the population mean and more efficient than SRS, SRSS and SSRS for symmetric and asymmetric distributions. In addition, by SDQRSS we can increase the efficiency of mean estimator for specific value of the sample size.展开更多
The objectives of this research were to identify and appraising the common dispute problems in domestic and international funded public works projects. The interview and questionnaire method were used in this research...The objectives of this research were to identify and appraising the common dispute problems in domestic and international funded public works projects. The interview and questionnaire method were used in this research. Randomly distributed questionnaire technique was applied to select samples of 390 various construction practitioners consisting of owners, consultants and main contractors to evaluate the severity of the 43 identified dispute factors. This survey found that contract and specification dispute problem was the highest concern among four main dispute problems for construction practitioners. The insufficient working drawing details factor was ranked as the highest overall severity index. The results of the survey also indicated that both domestic and international funded public projects faced moderately severe dispute level among construction team.展开更多
The paper gives a new approach to statistical simulation and resampling by the use of numbertheoretic methods and representative points. Resempling techniques take samples from an approximate population. The bootstrap...The paper gives a new approach to statistical simulation and resampling by the use of numbertheoretic methods and representative points. Resempling techniques take samples from an approximate population. The bootstrap suggests to use a random sample to form an approximate population. We propose to construct some approximate population distribution by the use of two kinds of representative points, and samples are taken from these approximate distributions. The statistical inference is based on those samples. The statistical inference in this paper involves estimation of mean, variance, skewness, kurtosis, quantile and density of the population distribution. Our results show that the new method can significantly improve the results by the use of Monte Carlo methods.展开更多
Linear mixed models are popularly used to fit continuous longitudinal data, and the random effects are commonly assumed to have normal distribution. However, this assumption needs to be tested so that further analysis...Linear mixed models are popularly used to fit continuous longitudinal data, and the random effects are commonly assumed to have normal distribution. However, this assumption needs to be tested so that further analysis can be proceeded well. In this paper, we consider the Baringhaus-Henze-Epps-Pulley (BHEP) tests, which are based on an empirical characteristic function. Differing from their case, we consider the normality checking for the random effects which are unobservable and the test should be based on their predictors. The test is consistent against global alternatives, and is sensitive to the local alternatives converging to the null at a certain rate arbitrarily close to 1/V~ where n is sample size. ^-hlrthermore, to overcome the problem that the limiting null distribution of the test is not tractable, we suggest a new method: use a conditional Monte Carlo test (CMCT) to approximate the null distribution, and then to simulate p-values. The test is compared with existing methods, the power is examined, and several examples are applied to illustrate the usefulness of our test in the analysis of longitudinal data.展开更多
文摘The procedure of stratified double quartile ranked set sampling (SDQRSS) method is introduced to estimate the population mean. The SDQRSS is compared with the simple random sampling (SRS), stratified ranked set sampling (SRSS) and stratified simple random sampling (SSRS). It is shown that SDQRSS estimator is an unbiased of the population mean and more efficient than SRS, SRSS and SSRS for symmetric and asymmetric distributions. In addition, by SDQRSS we can increase the efficiency of mean estimator for specific value of the sample size.
文摘The objectives of this research were to identify and appraising the common dispute problems in domestic and international funded public works projects. The interview and questionnaire method were used in this research. Randomly distributed questionnaire technique was applied to select samples of 390 various construction practitioners consisting of owners, consultants and main contractors to evaluate the severity of the 43 identified dispute factors. This survey found that contract and specification dispute problem was the highest concern among four main dispute problems for construction practitioners. The insufficient working drawing details factor was ranked as the highest overall severity index. The results of the survey also indicated that both domestic and international funded public projects faced moderately severe dispute level among construction team.
基金supported by the Special Research Foundation from the Chinese Academyof Sciencesthe Beijing Normal University-Hong Kong Baptist University United International College Research(Grant No.R201409)National Natural Science Foundation of China(Grant No.11261016)
文摘The paper gives a new approach to statistical simulation and resampling by the use of numbertheoretic methods and representative points. Resempling techniques take samples from an approximate population. The bootstrap suggests to use a random sample to form an approximate population. We propose to construct some approximate population distribution by the use of two kinds of representative points, and samples are taken from these approximate distributions. The statistical inference is based on those samples. The statistical inference in this paper involves estimation of mean, variance, skewness, kurtosis, quantile and density of the population distribution. Our results show that the new method can significantly improve the results by the use of Monte Carlo methods.
基金supported in part by a grant of Research Grants Council of Hong Kong,and National Natural Science Foundation of China (Grant No. 11101157)
文摘Linear mixed models are popularly used to fit continuous longitudinal data, and the random effects are commonly assumed to have normal distribution. However, this assumption needs to be tested so that further analysis can be proceeded well. In this paper, we consider the Baringhaus-Henze-Epps-Pulley (BHEP) tests, which are based on an empirical characteristic function. Differing from their case, we consider the normality checking for the random effects which are unobservable and the test should be based on their predictors. The test is consistent against global alternatives, and is sensitive to the local alternatives converging to the null at a certain rate arbitrarily close to 1/V~ where n is sample size. ^-hlrthermore, to overcome the problem that the limiting null distribution of the test is not tractable, we suggest a new method: use a conditional Monte Carlo test (CMCT) to approximate the null distribution, and then to simulate p-values. The test is compared with existing methods, the power is examined, and several examples are applied to illustrate the usefulness of our test in the analysis of longitudinal data.