目的探讨重型颅脑损伤患者并发急性胃肠损伤的危险因素,为预防急性胃肠损伤提供借鉴。方法2021年1月至2023年1月,便利抽样法选取某院收治的重型颅脑损伤患者150例为研究对象,建立基于重型颅脑损伤并发急性胃肠损伤的危险因素的随机森林...目的探讨重型颅脑损伤患者并发急性胃肠损伤的危险因素,为预防急性胃肠损伤提供借鉴。方法2021年1月至2023年1月,便利抽样法选取某院收治的重型颅脑损伤患者150例为研究对象,建立基于重型颅脑损伤并发急性胃肠损伤的危险因素的随机森林算法的预测模型。结果150例重症颅脑损伤患者中,并发急性胃肠损伤患者94例,占62.67%。是否并发急性胃肠道损伤的患者在糖尿病、白蛋白、APACHE-Ⅱ评分、休克指数、液体负平衡、酸中毒、深度镇静、呼吸衰竭方面的差异均有统计学意义(均P<0.05)。构建重型颅脑损伤并发急性胃肠损伤的随机森林模型,树的数量为103时出现的错误率最低;影响重型颅脑损伤并发急性胃肠损伤的因素重要性排序为糖尿病、液体负平衡、急性生理与慢性健康评分、白蛋白、深度镇静及酸中毒;随机森林模型预测重型颅脑损伤并发急性胃肠损伤的受试者工作特征曲线(receiver operating characteristic,ROC)下面积(area under curve,AUC)为0.798,Logistic回归模型的AUC为0.773。结论构建的重型颅脑损伤并发急性胃肠损伤的风险预测模型预测效能较高,临床值得推广应用。展开更多
针对动态变化的信道环境,自适应正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)系统可以对子载波间隔和循环前缀长度进行调整,以最大化系统的吞吐量。为了能够快速准确地找到OFDM系统在不同信道环境中的最优子载波间...针对动态变化的信道环境,自适应正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)系统可以对子载波间隔和循环前缀长度进行调整,以最大化系统的吞吐量。为了能够快速准确地找到OFDM系统在不同信道环境中的最优子载波间隔和循环前缀长度取值,本文提出了基于随机森林的OFDM系统自适应算法。随机森林算法基于集成的思想,能够有效处理高维度数据,并且具有高效率、高准确率和强泛化能力等优势,可以在复杂的数据场景下进行有效的分类。通过提取通信过程中信噪比、用户移动速度、最大多普勒频率和均方根时延扩展等信道特征与OFDM系统的子载波间隔和循环前缀长度组成训练样本,利用随机森林算法创建了OFDM系统参数多分类模型。所提模型可以根据输入的信道特征,实现OFDM系统子载波间隔和循环前缀长度的自适应分配。同时,针对训练样本主要集中在少数几个系统参数类别的情况,利用合成少数类过采样技术对较少样本数的类别进行扩充,满足了随机森林算法对训练样本类别平衡化的需求,进一步提高了算法的分类准确率。相比传统的自适应算法,所提算法具有更高的分类准确率和模型泛化能力。分析和仿真结果表明,与子载波间隔和循环前缀长度固定的OFDM系统相比,本文所提出的自适应算法能够准确选择出最优的系统参数,可以有效地减轻信道中符号间干扰和子载波间干扰的影响,从而在整个信噪比范围上提供最大的平均频谱效率。基于随机森林的OFDM系统自适应算法能够动态地分配子载波间隔和循环前缀长度,增强OFDM系统的通信质量和抗干扰能力,实现在不同信道环境下的可靠传输。展开更多
文摘目的探讨重型颅脑损伤患者并发急性胃肠损伤的危险因素,为预防急性胃肠损伤提供借鉴。方法2021年1月至2023年1月,便利抽样法选取某院收治的重型颅脑损伤患者150例为研究对象,建立基于重型颅脑损伤并发急性胃肠损伤的危险因素的随机森林算法的预测模型。结果150例重症颅脑损伤患者中,并发急性胃肠损伤患者94例,占62.67%。是否并发急性胃肠道损伤的患者在糖尿病、白蛋白、APACHE-Ⅱ评分、休克指数、液体负平衡、酸中毒、深度镇静、呼吸衰竭方面的差异均有统计学意义(均P<0.05)。构建重型颅脑损伤并发急性胃肠损伤的随机森林模型,树的数量为103时出现的错误率最低;影响重型颅脑损伤并发急性胃肠损伤的因素重要性排序为糖尿病、液体负平衡、急性生理与慢性健康评分、白蛋白、深度镇静及酸中毒;随机森林模型预测重型颅脑损伤并发急性胃肠损伤的受试者工作特征曲线(receiver operating characteristic,ROC)下面积(area under curve,AUC)为0.798,Logistic回归模型的AUC为0.773。结论构建的重型颅脑损伤并发急性胃肠损伤的风险预测模型预测效能较高,临床值得推广应用。
文摘针对动态变化的信道环境,自适应正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)系统可以对子载波间隔和循环前缀长度进行调整,以最大化系统的吞吐量。为了能够快速准确地找到OFDM系统在不同信道环境中的最优子载波间隔和循环前缀长度取值,本文提出了基于随机森林的OFDM系统自适应算法。随机森林算法基于集成的思想,能够有效处理高维度数据,并且具有高效率、高准确率和强泛化能力等优势,可以在复杂的数据场景下进行有效的分类。通过提取通信过程中信噪比、用户移动速度、最大多普勒频率和均方根时延扩展等信道特征与OFDM系统的子载波间隔和循环前缀长度组成训练样本,利用随机森林算法创建了OFDM系统参数多分类模型。所提模型可以根据输入的信道特征,实现OFDM系统子载波间隔和循环前缀长度的自适应分配。同时,针对训练样本主要集中在少数几个系统参数类别的情况,利用合成少数类过采样技术对较少样本数的类别进行扩充,满足了随机森林算法对训练样本类别平衡化的需求,进一步提高了算法的分类准确率。相比传统的自适应算法,所提算法具有更高的分类准确率和模型泛化能力。分析和仿真结果表明,与子载波间隔和循环前缀长度固定的OFDM系统相比,本文所提出的自适应算法能够准确选择出最优的系统参数,可以有效地减轻信道中符号间干扰和子载波间干扰的影响,从而在整个信噪比范围上提供最大的平均频谱效率。基于随机森林的OFDM系统自适应算法能够动态地分配子载波间隔和循环前缀长度,增强OFDM系统的通信质量和抗干扰能力,实现在不同信道环境下的可靠传输。