期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
大数据背景下基于社交网络的聚类随机游走抽样算法研究 被引量:9
1
作者 贺建风 李宏煜 《统计研究》 CSSCI 北大核心 2021年第4期131-144,共14页
数字经济时代,社交网络作为数字化平台经济的重要载体,受到了国内外学者的广泛关注。大数据背景下,社交网络的商业应用价值巨大,但由于其网络规模空前庞大,传统的网络分析方法因计算成本过高而不再适用。而通过网络抽样算法获取样本网络... 数字经济时代,社交网络作为数字化平台经济的重要载体,受到了国内外学者的广泛关注。大数据背景下,社交网络的商业应用价值巨大,但由于其网络规模空前庞大,传统的网络分析方法因计算成本过高而不再适用。而通过网络抽样算法获取样本网络,再推断整体网络,可节约计算资源,因此抽样算法的好坏将直接影响社交网络分析结论的准确性。现有社交网络抽样算法存在忽略网络内部拓扑结构、容易陷入局部网络、抽样效率过低等缺陷。为了弥补现有社交网络抽样算法的缺陷,本文结合大数据社交网络的社区特征,提出了一种聚类随机游走抽样算法。该方法首先使用社区聚类算法将原始网络节点进行社区划分,得到多个社区网络,然后分别对每个社区进行随机游走抽样获取样本网络。数值模拟和案例应用的结果均表明,聚类随机游走抽样算法克服了传统网络抽样算法的缺点,能够在降低网络规模的同时较好地保留原始网络的结构特征。此外,该抽样算法还可以并行运算,有效提升抽样效率,对于大数据背景下大规模社交网络的抽样实践具有重大现实意义。 展开更多
关键词 大数据 社交网络 社区聚类 随机游走抽样
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部