期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于凸多面体碰撞检测的虚拟砂轮建模研究 被引量:3
1
作者 陈豪 赵继 +1 位作者 徐秀玲 于天彪 《中国机械工程》 EI CAS CSCD 北大核心 2022年第2期127-133,共7页
虚拟砂轮建模时大多采用包围球对磨粒进行碰撞检测,而包围球相互接触时凸多面体磨粒之间仍存在间隙,导致虚拟砂轮表面与实际砂轮表面差异较大,影响后续磨削过程仿真的准确性。针对这一问题,提出了一种基于凸多面体碰撞检测的虚拟砂轮建... 虚拟砂轮建模时大多采用包围球对磨粒进行碰撞检测,而包围球相互接触时凸多面体磨粒之间仍存在间隙,导致虚拟砂轮表面与实际砂轮表面差异较大,影响后续磨削过程仿真的准确性。针对这一问题,提出了一种基于凸多面体碰撞检测的虚拟砂轮建模方法。推导了砂轮表面磨粒随机位置的数学模型,基于凸多面体碰撞检测判断磨粒干涉状况,最终生成虚拟砂轮。对基于凸多面体和包围球碰撞检测方法生成的虚拟砂轮表面进行对比分析,发现前者的磨粒位置更具随机性,且可以生成磨粒率为60%的虚拟砂轮,后者则不能生成磨粒率大于50%的虚拟砂轮。最后将虚拟砂轮与真实砂轮进行对比分析,结果表明虚拟砂轮与真实砂轮的表面特征一致,证明了该方法的优越性。 展开更多
关键词 虚拟砂轮 随机磨粒 凸多面体 碰撞检测
下载PDF
Data driven particle size estimation of hematite grinding process using stochastic configuration network with robust technique 被引量:6
2
作者 DAI Wei LI De-peng +1 位作者 CHEN Qi-xin CHAI Tian-you 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第1期43-62,共20页
As a production quality index of hematite grinding process,particle size(PS)is hard to be measured in real time.To achieve the PS estimation,this paper proposes a novel data driven model of PS using stochastic configu... As a production quality index of hematite grinding process,particle size(PS)is hard to be measured in real time.To achieve the PS estimation,this paper proposes a novel data driven model of PS using stochastic configuration network(SCN)with robust technique,namely,robust SCN(RSCN).Firstly,this paper proves the universal approximation property of RSCN with weighted least squares technique.Secondly,three robust algorithms are presented by employing M-estimation with Huber loss function,M-estimation with interquartile range(IQR)and nonparametric kernel density estimation(NKDE)function respectively to set the penalty weight.Comparison experiments are first carried out based on the UCI standard data sets to verify the effectiveness of these methods,and then the data-driven PS model based on the robust algorithms are established and verified.Experimental results show that the RSCN has an excellent performance for the PS estimation. 展开更多
关键词 hematite grinding process particle size stochastic configuration network robust technique M-estimation nonparametric kernel density estimation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部