期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
考虑ATIS市场占有率及遵从率的随机系统最优拥挤收费模型 被引量:8
1
作者 钟绍鹏 邓卫 包丹文 《系统工程理论与实践》 EI CSSCI CSCD 北大核心 2013年第2期456-462,共7页
考虑装备ATIS的用户在出行时并不总是遵从ATIS提供的信息,将所有用户分为三类:装备ATIS且遵从的用户,装备ATIS但不遵从的用户和未装备ATIS的用户.其次,根据用户的时间价值(VOT)将用户进行分组.研究了周期性拥堵交通网络条件下内生ATIS... 考虑装备ATIS的用户在出行时并不总是遵从ATIS提供的信息,将所有用户分为三类:装备ATIS且遵从的用户,装备ATIS但不遵从的用户和未装备ATIS的用户.其次,根据用户的时间价值(VOT)将用户进行分组.研究了周期性拥堵交通网络条件下内生ATIS市场占有率和遵从率的随机系统最优拥挤收费问题,建立了内生ATIS市场占有率和遵从率下多用户类型随机系统最优拥挤收费模型.通过算例分析表明:ATIS为用户提供的交通信息质量的提高有利于降低网络中的拥挤收费总额;虽然高收入人和低收入人同样装备ATIS,但是他(她)们的路径选择行为却不尽相同,高收入人的ATIS市场占有率和遵从率均高于低收入人;ATIS的信息质量既影响ATIS市场占有率又影响遵从率. 展开更多
关键词 拥挤收费 随机系统最优 先进的出行者信息系统 市场占有率 遵从率
原文传递
基于路径运行时间可靠度的随机系统最优拥挤收费模型 被引量:8
2
作者 钟绍鹏 邓卫 《系统工程理论与实践》 EI CSSCI CSCD 北大核心 2010年第12期2297-2308,共12页
应用交通网络平衡模型和边际成本收费理论相结合的方法,研究了运行时间可靠度下的随机系统最优拥挤收费问题,建立了运行时间可靠度及内生ATIS市场渗透率条件下随机系统最优交通拥挤收费模型.分析了基于运行时间可靠度下的随机系统最优... 应用交通网络平衡模型和边际成本收费理论相结合的方法,研究了运行时间可靠度下的随机系统最优拥挤收费问题,建立了运行时间可靠度及内生ATIS市场渗透率条件下随机系统最优交通拥挤收费模型.分析了基于运行时间可靠度下的随机系统最优拥挤收费对用户出行行为的影响.发现了与确定性网络用户平衡流中的情形类似,对于考虑运行时间可靠度下的随机交通网络,边际成本收费理论仍然适用,即采用边际社会成本流函数代替单位路段成本流函数,可以使随机网络随机用户平衡流变为随机网络随机系统最优流.算例分析结果表明:在传统的拥挤收费模型中,拥挤收费仅与路径(路段)运行时间和路径(路段)流量有关.现实中,在确定他们的出行路线时,用户往往还会考虑网络运行时间可靠度因素,而不仅仅是路径运行时间或成本.用户对于运行时间可靠度的置信度要求越高,传统的拥挤收费执行效果越不理想.因此,现实生活中传统的拥挤收费不一定能使网络效益达到最优或缓解交通拥挤. 展开更多
关键词 拥挤收费 运行时间可靠度 随机系统最优 先进的出行者信息系统 非可加路径成本
原文传递
多用户类型随机系统最优拥挤收费模型 被引量:1
3
作者 钟绍鹏 邓卫 《交通运输工程学报》 EI CSCD 北大核心 2010年第6期94-101,共8页
采用交通网络平衡模型和边际成本收费理论相结合的方法,建立了内生ATIS市场占有率及弹性需求条件下多用户类型随机系统最优拥挤收费模型,分析了ATIS与边际成本收费的结合对不同类型用户出行行为的影响。分析结果表明:阻抗函数对称的边... 采用交通网络平衡模型和边际成本收费理论相结合的方法,建立了内生ATIS市场占有率及弹性需求条件下多用户类型随机系统最优拥挤收费模型,分析了ATIS与边际成本收费的结合对不同类型用户出行行为的影响。分析结果表明:阻抗函数对称的边际成本收费模型忽略了出行者对邻近道路用户产生的外部成本,由此得到的边际成本收费偏小。当装备与未装备ATIS用户的出行成本感知变化参数分别为0.50与0.01时,与不采取任何交通管理措施相比,ATIS与边际成本收费同时使用可以使网络总运行成本节省14.3%,单独使用ATIS或边际成本收费可以使网络总运行成本节省13.6%或6.3%,说明2种技术的结合可以有效优化网络运行效率。 展开更多
关键词 交通工程 随机系统最优拥挤收费 出行者信息系统 市场占有率 阻抗函数
原文传递
地震激励邻接高层建筑的随机最优控制
4
作者 应祖光 倪一清 高赞明 《工程力学》 EI CSCD 北大核心 2003年第4期204-208,共5页
采用控制设备联接相邻的高层建筑以降低其地震响应是一个切实有效的方法。基于随机动态规划原理与随机平均法,提出耦合相邻高层建筑的随机最优控制方法。先建立任意层数并在任意层高处控制联接的耦合结构的缩聚模型,再运用随机平均法导... 采用控制设备联接相邻的高层建筑以降低其地震响应是一个切实有效的方法。基于随机动态规划原理与随机平均法,提出耦合相邻高层建筑的随机最优控制方法。先建立任意层数并在任意层高处控制联接的耦合结构的缩聚模型,再运用随机平均法导出关于模态能量的oIt随机微分方程,应用随机动态规划原理建立动态规划方程,由此可确定最优控制律。将结构的响应控制化为模态能量控制,缩减控制系统的维数。用高斯随机过程模拟地震激励,可计及其功率谱特性。数值结果表明该耦合结构随机最优控制方法的有效性。 展开更多
关键词 振动与波 随机激励结构的最优智能系统控制 理论分析与数值计算 高层建筑 随机最优控制
下载PDF
Science Letters:A minimax optimal control strategy for uncertain quasi-Hamiltonian systems
5
作者 Yong WAN Zu-guang YIN Wei-qiu ZHU 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2008年第7期950-954,共5页
A minimax optimal control strategy for quasi-Hamiltonian systems with bounded parametric and/or external disturbances is proposed based on the stochastic averaging method and stochastic differential game. To conduct t... A minimax optimal control strategy for quasi-Hamiltonian systems with bounded parametric and/or external disturbances is proposed based on the stochastic averaging method and stochastic differential game. To conduct the system energy control, the partially averaged Ito stochastic differential equations for the energy processes are first derived by using the stochastic averaging method for quasi-Hamiltonian systems. Combining the above equations with an appropriate performance index, the proposed strategy is searching for an optimal worst-case controller by solving a stochastic differential game problem. The worst-case disturbances and the optimal controls are obtained by solving a Hamilton-Jacobi-Isaacs (HJI) equation. Numerical results for a controlled and stochastically excited DulTlng oscillator with uncertain disturbances exhibit the efficacy of the proposed control strategy. 展开更多
关键词 Nonlinear quasi-Hamiltonian system Minimax optimal control Stochastic excitation Uncertain disturbance Stochastic averaging Stochastic differential game
下载PDF
THE MAXIMUM PRINCIPLE FOR PARTIALLY OBSERVED OPTIMAL CONTROL OF FORWARD-BACKWARD STOCHASTIC SYSTEMS WITH RANDOM JUMPS 被引量:4
6
作者 Hua XIAO 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2011年第6期1083-1099,共17页
This paper studies the problem of partially observed optimal control for forward-backward stochastic systems which are driven both by Brownian motions and an independent Poisson random measure. Combining forward-backw... This paper studies the problem of partially observed optimal control for forward-backward stochastic systems which are driven both by Brownian motions and an independent Poisson random measure. Combining forward-backward stochastic differential equation theory with certain classical convex variational techniques, the necessary maximum principle is proved for the partially observed optimal control, where the control domain is a nonempty convex set. Under certain convexity assumptions, the author also gives the sufficient conditions of an optimal control for the aforementioned optimal optimal problem. To illustrate the theoretical result, the author also works out an example of partial information linear-quadratic optimal control, and finds an explicit expression of the corresponding optimal control by applying the necessary and sufficient maximum principle. 展开更多
关键词 Forward-backward stochastic differential equations maximum principle partially observed optimal control random jumps.
原文传递
MAXIMUM PRINCIPLE FOR FORWARD-BACKWARD STOCHASTIC CONTROL SYSTEM WITH RANDOM JUMPS AND APPLICATIONS TO FINANCE 被引量:13
7
作者 Jingtao SHI·Zhen WU School of Mathematics,Shandong University,Jinan 250100,China. 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2010年第2期219-231,共13页
Both necessary and sufficient maximum principles for optimal control of stochastic systemwith random jumps consisting of forward and backward state variables are proved.The control variableis allowed to enter both dif... Both necessary and sufficient maximum principles for optimal control of stochastic systemwith random jumps consisting of forward and backward state variables are proved.The control variableis allowed to enter both diffusion and jump coefficients.The result is applied to a mean-varianceportfolio selection mixed with a recursive utility functional optimization problem.Explicit expressionof the optimal portfolio selection strategy is obtained in the state feedback form. 展开更多
关键词 Forward-backward stochastic control system maximum principle Poisson random measure recursive utility stochastic optimal control.
原文传递
STOCHASTIC MAXIMUM PRINCIPLE FOR MIXED REGULAR-SINGULAR CONTROL PROBLEMS OF FORWARD-BACKWARD SYSTEMS 被引量:1
8
作者 ZHANG Feng 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2013年第6期886-901,共16页
This paper considers a stochastic optimal control problem of a forward-backward system with regular-singular controls where the set of regular controls is not necessarily convex and the regular control enters the diff... This paper considers a stochastic optimal control problem of a forward-backward system with regular-singular controls where the set of regular controls is not necessarily convex and the regular control enters the diffusion coefficient.This control problem is difficult to solve with the classical method of spike variation.The authors use the approach of relaxed controls to establish maximum principle for this stochastic optimal control problem.Sufficient optimality conditions are also investigated. 展开更多
关键词 Forward-backward system maximum principle relaxed control singular control.
原文传递
On Optimal Mean-Field Control Problem of Mean-Field Forward-Backward Stochastic System with Jumps Under Partial Information
9
作者 ZHOU Qing REN Yong WU Weixing 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2017年第4期828-856,共29页
This paper considers the problem of partially observed optimal control for forward-backward stochastic systems driven by Brownian motions and an independent Poisson random measure with a feature that the cost function... This paper considers the problem of partially observed optimal control for forward-backward stochastic systems driven by Brownian motions and an independent Poisson random measure with a feature that the cost functional is of mean-field type. When the coefficients of the system and the objective performance functionals are allowed to be random, possibly non-Markovian, Malliavin calculus is employed to derive a maximum principle for the optimal control of such a system where the adjoint process is explicitly expressed. The authors also investigate the mean-field type optimal control problem for the system driven by mean-field type forward-backward stochastic differential equations(FBSDEs in short) with jumps, where the coefficients contain not only the state process but also its expectation under partially observed information. The maximum principle is established using convex variational technique. An example is given to illustrate the obtained results. 展开更多
关键词 Forward-backward stochastic differential equation Girsanov's theorem jump diffusion Malliavin calculus maximum principle mean-field type partial information.
原文传递
Optimal filtering for uncertain systems with stochastic nonlinearities, correlated noises and missing measurements 被引量:3
10
作者 Shuo Zhang Yan Zhao +1 位作者 Min Li Jianhui Zhao 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2015年第5期1052-1059,共8页
The globally optimal recursive filtering problem is studied for a class of systems with random parameter matrices,stochastic nonlinearities, correlated noises and missing measurements. The stochastic nonlinearities ar... The globally optimal recursive filtering problem is studied for a class of systems with random parameter matrices,stochastic nonlinearities, correlated noises and missing measurements. The stochastic nonlinearities are presented in the system model to reflect multiplicative random disturbances, and the additive noises, process noise and measurement noise, are assumed to be one-step autocorrelated as well as two-step cross-correlated.A series of random variables is introduced as the missing rates governing the intermittent measurement losses caused by unfavorable network conditions. The aim of the addressed filtering problem is to design an optimal recursive filter for the uncertain systems based on an innovation approach such that the filtering error is globally minimized at each sampling time. A numerical simulation example is provided to illustrate the effectiveness and applicability of the proposed algorithm. 展开更多
关键词 globally optimal recursive filtering random parame- ter matrices stochastic nonlinearities correlated noises missing measurements
原文传递
Optimal variational principle for backward stochastic control systems associated with Lévy processes 被引量:8
11
作者 TANG MaoNing 1 & ZHANG Qi 2,1 Department of Mathematical Sciences,Huzhou University,Huzhou 313000,China 2 School of Mathematical Sciences,Fudan University,Shanghai 200433,China 《Science China Mathematics》 SCIE 2012年第4期745-761,共17页
The paper is concerned with optimal control of backward stochastic differentiM equation (BSDE) driven by Teugel's martingales and an independent multi-dimensional Brownian motion, where Teugel's martingales are a ... The paper is concerned with optimal control of backward stochastic differentiM equation (BSDE) driven by Teugel's martingales and an independent multi-dimensional Brownian motion, where Teugel's martingales are a family of pairwise strongly orthonormal martingales associated with L6vy processes (see e.g., Nualart and Schoutens' paper in 2000). We derive the necessary and sufficient conditions for the existence of the optimal control by means of convex variation methods and duality techniques. As an application, the optimal control problem of linear backward stochastic differential equation with a quadratic cost criteria (or backward linear-quadratic problem, or BLQ problem for short) is discussed and characterized by a stochastic Hamilton system. 展开更多
关键词 stochastic control stochastic maximum principle Ldvy processes Teugel's martingales backwardstochastic differential equations
原文传递
A Maximum Principle for General Backward Stochastic Differential Equation
12
作者 WU Shuang SHU Lan 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2016年第6期1505-1518,共14页
In this paper,the authors consider a stochastic control problem where the system is governed by a general backward stochastic differential equation.The control domain need not be convex,and the diffusion coefficient c... In this paper,the authors consider a stochastic control problem where the system is governed by a general backward stochastic differential equation.The control domain need not be convex,and the diffusion coefficient can contain a control variable.The authors obtain a stochastic maximum principle for the optimal control of this problem by virtue of the second-order duality method. 展开更多
关键词 Adjoint equations backward stochastic differential equation maximum principle varia-tional inequality.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部