With an analysis of the main document databases,this paper discusses the combined retrieval models used under the multi restrictive conditions by use of the conditional probability theory.The paper provides system pro...With an analysis of the main document databases,this paper discusses the combined retrieval models used under the multi restrictive conditions by use of the conditional probability theory.The paper provides system programmers with combined probability theory and its application examples.It’s useful for users to increase recall ratio,pertinency ratio and search rate.展开更多
为了考虑风光不确定性给微网运行带来的风险,针对独立型微网的容量优化配置,提出一种基于生成对抗网络(generative adversarial network,GAN)场景模拟和条件风险价值(conditional value at risk,CVaR)的容量随机优化配置模型。首先利用...为了考虑风光不确定性给微网运行带来的风险,针对独立型微网的容量优化配置,提出一种基于生成对抗网络(generative adversarial network,GAN)场景模拟和条件风险价值(conditional value at risk,CVaR)的容量随机优化配置模型。首先利用GAN模拟大量风光出力场景,再用K-medoids聚类进行消减得到若干典型场景;其次,以微网供电可靠性为约束,以经济性和可再生能源利用率为目标函数,通过CVaR度量因风光资源不确定性给微网系统带来的运行风险,并将其以平均风险损失的形式与目标函数相结合,构建微网电源容量随机优化配置模型;最后,采用电源损失风险和负荷风险损失指标对配置结果进行评价。仿真算例表明,相比于仅采用典型年风光资源数据进行配置的传统方法,文中提出的模型对于规划周期内可能出现的运行场景适应性更好。展开更多
文摘With an analysis of the main document databases,this paper discusses the combined retrieval models used under the multi restrictive conditions by use of the conditional probability theory.The paper provides system programmers with combined probability theory and its application examples.It’s useful for users to increase recall ratio,pertinency ratio and search rate.
文摘为了考虑风光不确定性给微网运行带来的风险,针对独立型微网的容量优化配置,提出一种基于生成对抗网络(generative adversarial network,GAN)场景模拟和条件风险价值(conditional value at risk,CVaR)的容量随机优化配置模型。首先利用GAN模拟大量风光出力场景,再用K-medoids聚类进行消减得到若干典型场景;其次,以微网供电可靠性为约束,以经济性和可再生能源利用率为目标函数,通过CVaR度量因风光资源不确定性给微网系统带来的运行风险,并将其以平均风险损失的形式与目标函数相结合,构建微网电源容量随机优化配置模型;最后,采用电源损失风险和负荷风险损失指标对配置结果进行评价。仿真算例表明,相比于仅采用典型年风光资源数据进行配置的传统方法,文中提出的模型对于规划周期内可能出现的运行场景适应性更好。